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1. INTRODUCTION 

This is the final report on the project relating to the development of a holographic system 
for avionics durability analysis and validation. This report covers the 36 months duration of the 
project. 

1.1. Objective 

The objective of this project was to develop and apply, to micro-scale electronic 
assemblies, a quantitative measurement approach using electro-optic holography (EOH) that is 
able to simultaneously measure three-dimensional displacements and deformations under either 
static, quasi-static, or vibration conditions. 

1.2. Background 

Modern avionics are complex assemblies of micro-scale structural elements that must 
withstand the applied and/or generated mechanical, thermal, chemical, and/or electrical stresses. 
The durability of the micro-scale elements controls the overall durability of the avionic 
components, modules, assemblies, etc. 

Validated durability prediction methods are needed for the design assessment phases to 
allow engineers to predict, within engineering confidence, the available failure free life of 
avionics systems based on the materials and geometries of the micro-scale structural elements 
common to current and future electronic components and assemblies. Predictions of this type are 
additionally complicated, in contrast to large structural systems, by the fact that the geometric 
features of the micro-scale structural elements are on the same size and order of magnitude as the 
microstructure of the materials. 

Ever increasing demands for optimum design of avionics, in particular in respect to 
electronic packaging, require accurate knowledge of the behavior of the components under actual 
operating conditions. This information, however, is difficult to obtain experimentally because of 
the small size of today's electronic components. Also, the conventional experimental procedures 
involving strain gauges, photoelasticity, mechanical probing, etc., are generally not applicable to 
these measurements because they are invasive in nature and, therefore, interfere with the 
performance of the tested components. An alternative to the conventional experimental methods, 
however, can be provided using recent developments in laser technology. Out of a number of 
existing laser methods, available today, the methods of heterodyne hologram interferometry 
(HHI), electro-optic holography (EOH), pulsed electro-optic holography (PEOH), and their 
variations, including hologram interferometry with multiple illuminations and a single 
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observation point, and hologram interferometry with multiple observations for a single 
illumination, are the most applicable to the studies of electronic components. This stems from 
the fact that displacements and/or deformations of today's electronic components are very small 
and take place over the entire component, which itself is very small. The measurements, 
therefore, made on such components, must be accurate and precise. Otherwise, experimental 
uncertainties will constitute an appreciable percentage of the measured quantity and the 
experimental results might not be useful from the designer's point of view. 

Of particular interest to this project was the EOH method. In this method, no 
photographic recording is necessary and interferometric data are acquired by a CCD camera at 
high spatial resolution and at 30 frames per second. These data are entered directly into the host 
computer and are ready for subsequent processing. 

At the time of initiation of this project, the state-of-the-art EOH system, existing at the 
Center for Holographic Studies and Laser umechTronics (CHSLT), was equipped with only one 
CCD camera. In order to be able to measure displacements and deformations in 
three-dimensions, the system was expanded to include three CCD cameras for simultaneous, 
non-coplanar viewing of the object. To facilitate operation of the expanded EOH system with 
three-dimensional measurement capabilities, developments of this project were combined with 
prior developments at the CHSLT and implemented to study avionics, as described in this report. 

1.3. Organization of this report 

This report consists of three volumes. Volume one contains the text. Volumes two and 
three contain the presentation materials. 

The text, contained in Volume 1 of this report, presents fundamentals of holography, 
description of the electro-optic holography (EOH) system, and case studies demonstrating 
applicability of the system to study of avionics. The appendices of the report contain reprints of 
publications resulting from this project. 

More specifically, this report gives a brief introduction to mathematical fundamentals and 
definitions necessary to quantitatively apply hologram interferometry. This presentation relates 
to projection matrices, illumination, observation, and sensitivity vectors, determination of 
displacements from holograms, including interpretation of time-average interferograms. This is 
followed by description of the EOH system for automated, quantitative interpretation of 
holograms based on direct electronic acquisition and processing of holographic data, as 
developed in the course of this project. Use of the EOH system is demonstrated by 
representative case studies of avionics. 

Basic definitions of the parameters defining hologram recording and reconstruction 
geometries are give in Chapter 2. This is followed by Chapter 3 presentation of the concepts of 
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the projection matrices necessary for quantitative interpretation of interferograms with special 
emphasis on electronic holograms. Based on these concepts, Chapters 4, 5, and 6 detail 
procedures for determination of displacements, rigid-body motions, and strains and rotations 
directly from holograms, respectively. These procedures are general in nature and apply to all 
types of interferograms. Chapter 7 concentrates on interpretation of time-average holograms of 
vibrating objects. Electro-optic holography (EOH) is described in Chapter 8, including 
description of the system and presentation of representative results. Complementary discussion 
of electro-optic shearography (EOS) is given in Chapter 9 and its relationship to EOH is 
illustrated with representative examples. Modern hybrid approach to structural deformation 
analysis by ACES methodology, which is based on a combined use of analytical, computational, 
and experimental solution methodologies, is introduced in Chapter 10. Chapter 11 addresses 
quantitative EOH and FEM hybrid study of vibration characteristics of avionics. Preliminary 
results of the state-of-the-art hybrid, EOH and FEM, study and optimization of cantilever plate 
dynamics are presented in Chapter 12. Chapter 13 gives overall summary, conclusions, and 
recommendations for the project. 

Reprints of the publications, which resulted from this project, are included in Appendices 
A to F. Appendix A presents description and initial results obtained using the EOH system. 
Automated fringe unwrapping by energy minimization, as developed during this project and 
implemented in the EOH system, is discussed in Appendix B. Three-dimensional graphics 
techniques applied to the rendering of holographic interferometric data are presented in 
Appendix C. Appendix D details phase unwrapping by least-squares error minimization of phase 
curvature. Vibration studies using EOH and FEM methodologies are described in Appendix E. 
Appendix F presents quantitative EOH study of dynamics of electronic components. 

Presentation materials, consisting of selected sections of this report, are contained in 
Volumes 2 and 3. Volume 2 contains overhead transparencies, while Volume 3 contains VHS 
tape recordings of representative case studies performed during this project. 
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2. ILLUMINATION, OBSERVATION, 
AND SENSITIVITY VECTORS 

Quantitative interpretation of holograms depends on knowledge of the illumination and 
observation directions used during recording and reconstruction of the holograms. These 
directions are defined by illumination and observation vectors, K, and K2, respectively, as shown 
in Fig. 2.1. The projection matrices are based on the unit vectors defining these directions of 
illumination and observation1"4. The vectors K; and K2, in turn, are used to define the sensitivity 
vector, K, as detailed in Section 2.1. 

ARBITRARY 
OBJECT 

K - K2
_ K| 

OBSERVATION 
POINT 

POINT-SOURCE 
OF   ILLUMINATION 

Fig. 2.1. Illumination and observation geometry in 
hologram interferometry. 

2.1. Mathematical considerations 

The vectors Kj and K2 are defined as propagation vectors of light from the point source of 
illumination to the object and from the object to the "observer" (photosensitive medium, or the 
sensing element of a CCD camera), respectively, Fig. 2.1. Therefore, Kj and K2 can be readily 
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described in terms of position vectors, R,, Rp, and R2, which are defined with respect to the 
origin of the Cartesian x-y-z coordinate system. These position vectors, defining the locations of 
the point source of illumination, a point on the object, and a point of observation, are: 

Ri 
A                     A                      A 

= x\i+y\j + z\k   , (2.1) 

Rp 
A                      A                       A 

— xpi+ypj+zpk   , (2.2) 
and 

R2 = X2l+y2J+Z2k    , (2.3) 

A         A                             A 

respectively, where i, j, and k represent unit vectors, which are parallel to the axis of the 
coordinate system. 

Using Eqs 2.1 to 2.3 and the geometry shown in Fig. 2.1, the vectors K, and K2 can be 
defined as 

Kj 
(               A         A^       RP-RI 

= kKx = k[Klxi + Klyj + Kukj = *.R _R | 

A                                                     A                                                     A 

_     (xp-xi)i+ (yP-yi)j +(zP~zi)k 

[(xP-Xl)
2 + (yP-yi)2 + (ZP-ZI)

2
]I 

and 

: kKixi + kKiyj + kKuk (2.4) 

K2 = kK2 = kfxj + K2J + K2,k) = ^ ||^zfj| 

(x2-xp)i + {yi-yp)j + (z2-zp)k 

[(x2-xP)2 + (y2-yp)2 + (Z2-ZP)
2
]I 

= kK2xi + kK2yj + kK2zk   . (2.5) 

A A 

In Eqs 2.4 and 2.5, ^i and K2 are the unit illumination and observation vectors, respectively, 
while k is the magnitude of the Ki and K2 vectors defined as 

|K!| = |K2l=*=^  , (2.6) 

with X being the wavelength of the laser light. 
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Finally, definition of the sensitivity vector K, as a difference between the observation and 
illumination vectors, yields 

K = Kxi + Kyj + Kzk 

= K2-Kl=k(k2-k]) 

= k{Klx - KXx)i + KKiy - Kiy)j + k{K2z - Kujk    , (2.7) 

where Kj and K2 are as defined in Eqs 2.4 and 2.5, respectively. 
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3. PROJECTION MATRICES: 
DEFINITION AND PROPERTIES 

Quantitative interpretation of holograms is based on one's ability to delineate various 
parameters which characterize recording and reconstruction processes in hologram 
interferometry1. These parameters, being vectorial in nature, can be most clearly defined by 
matrix transformations. These transformations map fields of three-dimensional vectors from one 
space into corresponding fields of vectors in another space by means of projection matrices1"4. 

The matrix transformation which is of primary interest in quantitative interpretation of 
holograms is that which transforms a vector into its shadow on a surface. This transformation 
may fall into either of two categories: if the direction from which the shadow is cast is parallel to 
the surface normal, the operation is called a normal projection; if it is not, then it is called an 
oblique projection. 

3.1. Normal projection 

A 

Referring to Fig. 3.1, where A is a vector, b is a unit vector normal to a surface, and Aj is 
the projection of A onto a surface normal to b, it is seen that all that is required to obtain Ab 

is to subtract from A its component in the direction of b. The magnitude ofthat component is 
given by a scalar product b • A, and its direction is that of b, so that the result is 

Ab=A-b(b-A) (3.1) 

We may recognize the right-hand side of Eq. 3.1 as the expansion of the triple vector product, 
that is, 

A A 

Ab = -b x (b x A) (3.2) 

Because the vector product of two vectors yields a third vector, vector multiplication may be 
described as a transformation and it may be represented by a matrix. This is achieved by 

A ,—. 

arranging the components of the vector b as an antisymmetric matrix b, which can be written as 

b = 
0   -bz   by 

bz     0   -bx 

-by   bx    0 

(3.3) 

Using the matrix defined by Eq. 3.3, we may rewrite Eq. 3.2 as 
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Ab = -bbA=PbA   , (3-4) 

where 

Ph=-bb (3.5) 

is the matrix transformation that projects the vector A onto the surface which is normal to b to 
form the shadow Ab. 

Fig. 3.1. Normal projection onto a surface. 

In an alternate way, we can rewrite Eq. 3.1 in a matrix form such that 

Ah=IA 
' bx 0 0 1 

by 0 0 

. bz 0 0 J 

bx by bz 

0 0 0 
0 0 0 

\AX 0 0 " 
Ay 0 0 

[Az 0 0 
(3.6) 

where Ax, Ay, and Az are the components of A, bx,by, and b, are the components of b, and / 
is the identity matrix. The product of the first two matrices in the second term on the right hand 
side of Eq. 3.6 yields a 3 x 3 matrix whose elements are all nine possible products of the three 

A 

components of b. This operation defines the third type of product between two vectors, in 
addition to the well known scalar product and vector product. In this text, this operation will be 
called a matric product of two vectors, with the word matric meaning of or pertaining to a 
matrix, and it will be represented by an encircled cross, that is, ®. Thus, using the definition of 
the matric product, we may rewrite Eq. 3.6 as 
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Ab = (I-b®b)A = PbA 

from which it follows that 

Pb=l-b®b   . 

(3.7) 

(3.8) 

Equation 3.8 defines the matrix transformation which describes the normal projection along the 
unit vector b onto a plane whose normal is parallel to the direction of the projection. It should be 
noted that based on Eqs 3.5 and 3.8, 

Pb = -bb=I -b®b (3.9) 

3.2. Oblique projection 

A 

Now, let us define an oblique projection of the vector A along the direction b onto a 
surface that is normal to c, to produce the resultant vector Abc, as shown in Fig. 3.2. In this case, 
we must subtract from A such a component in the direction of b that the resultant has no 
component in the direction of c, that is, 

Abe = A- 
bic ■ A) 

A 

b-c 

where Abc is the projection of A from the direction of b onto a plane perpendicular to c. 

Equation 3.10 may be expressed in terms of the vector triple product as 

Abc = -T^—cx(bxA)   . 
b-c 

Using Eq. 3.3 and defining c as an antisymmetric matrix c, expressed as 

0    -cz   Cy 

cz    0   -cx 

-cy   cx    0 

we can rewrite Eq. 3.11 to obtain 

Abc=- ±-cbA=PbcA   . 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
b-c 
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where 

Pbc=~ ±-c~b 
b-c 

(3.14) 

is the transformation matrix that projects a vector along the direction of b onto a plane normal to 
c, to form the shadow Abc- Furthermore, we can easily express Eq. 3.10 in the form analogous 
to Eq. 3.7, that is, 

Abc=IA-^;b®cA=(I-TL;b®c)A = PbcA   , 
b-c b-c 

from which it clearly follows that 

~r 1 

(3.15) 

Pbc=I- ■b®c 
b-c 

(3.16) 

Finally, comparing Eqs 3.14 and 3.16, we obtain 

Pbc = J^cb=I--^-b®c 
b ■ c b-c 

(3.17) 

Equation 3.17 represents the transformation matrix defining the oblique projection that 
projects a vector along the direction of b onto the plane normal to c, to form the shadow Abe ■ It 
should be noted that the order of subscripts b and c in specification of the transformation matrix 
  A A 

Pbc, given by Eq. 3.17, is that of vectors b and c in the matric product b ® c. It should also be 
noted that in the special case when b-c , Eq. 3.17 reduces to Eq. 3.9. 

Fig. 3.2. Oblique projection onto a surface. 
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It must be noted that the order of multiplication is not interchangeable for the matric 
A A 

products because c ® b yields a matrix not equal to b ® c, but equal instead to its transpose. 
From this it may be deduced that the transpose of an oblique projection matrix simply exchanges 
the role of the two unit vectors. Therefore, 

PT
bc=Pcb   , (3-18) 

where Pcbis the transformation matrix that projects a vector along the direction of c onto a plane 
A 

normal to b. 

In addition, all projection matrices are singular and do not possess inverses. There is one 
property, however, that they do have and which is extensively used in holographic analysis. This 
property is based on the fact that if a vector is projected from a given direction onto a plane, and 
then if this result is projected from the same direction onto the second plane, the final result is the 
same as having projected the original vector onto the second plane directly. Thus, for example, if 
a vector is first projected from the direction b onto a plane normal to c, and then if this result is 
projected again from the same direction b onto a plane normal to b, the result is 

PbPbc=Pb   , (3-19) 

where is should be noted that the second projection premultiplies the first projection. 

In another case, when P^is the transformation matrix defining the first projection and 
Pbais the matrix characterizing the second projection, then 

PbaPbc=Pba     ■ (3.20) 

It is important to keep in mind that in these sequences the direction along which the 
projection is made does not change. However, it should be observed that the sequence of two 
normal projections, first onto one surface, Pa, and then onto another, Pb, is not the same as the 
oblique projection P\,a, that is, 

PbPa^Pba    ■ (3-21) 
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4. DETERMINATION OF DISPLACEMENTS 

Hologram interferometry is used to measure displacements of objects subjected to static 
and/or dynamic loads. Depending on the loading method used and the methods for 
recording/reconstruction of holograms and readout of the interferometric information, fringe 
patterns produced during these reconstructions can be classified either as cosinusoidal fringes or 
Bessel (Jo) fringes. Typical appearances of these two types of holographic fringes are shown in 
Fig. 4.1.° 

Fig. 4.1. Typical appearances of the two types of holographic fringes: 
(a) and (c) show cosinusoidal fringes - note that the zero-order fringes are 
as bright as the higher order cosinusoidal fringes, while (b) and (d) show 

J0 fringes - note that the zero-order fringes are much brighter than 
the higher order J0 fringes. 

The cosinusoidal fringes are of equal brightness across the image, regardless of the fringe 
order, and are normally associated with a response of the object to the static load. The Bessel 
fringes are of unequal brightness, which decreases as the fringe order increases, across the image. 
These fringes are normally associated with a response of the object to dynamic loading, 
especially periodic excitation causing objects to resonate. Interpretation of the cosinusoidal 
fringes is a subject of this chapter, while interpretation of the Bessel fringes is discussed in 
Chapter 7. 
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Holographie numerical analysis depends on knowledge of the illumination and the 
observation directions used while recording and/or reconstructing the holograms1. These 
directions are described by the illumination and observation vectors, K, and K2, respectively, as 
discussed in Chapter 2, and define propagation of light from the point source of illumination via 
the object to the observation point. As the object displaces/deforms, while recording a hologram, 
the phase difference between the light beams arriving at a specific observation point, from the 
object and its displaced/deformed copy, is encoded in form of fringe patterns. These fringes are 
described by a fringe-locus function, £1, constant values of which define fringe loci on the 
surface of the object. The fringe-locus function relates directly to the fringe orders, n, via 

Q = 2nn   . (4.1) 

The fringe-locus function can also be related to the scalar product of the sensitivity vector 
K with the displacement vector L, that is, 

K  L = Q.   . (4.2) 

The sensitivity vector K, appearing in Eq. 4.2, can be varied by changing either the 
direction of illumination, Kp or the direction of observation, K2, or both K, and K2 

simultaneously. Because of different approaches employed to vary K and because of different 
approaches used in determination of Q, the problem of extracting displacement vectors, L, 
directly from cosinusoidal fringes has been solved in a number of ways1"9. In this section, we 
will discuss some of these ways for determination of the object displacements directly from the 
fringe patterns observed during reconstruction of holograms. We will begin with interpretation 
of a single hologram when the fringe order is known, then, we will follow with interpretation of a 
single hologram when the fringe order is unknown and, finally, we will present a method, based 
on the projection matrices, for determination of displacements from multiple holograms. 

4.1. Determination of displacements when fringe order is known 

Determination of displacements when the fringe order is known represents a special case, 
in holographic numerical analysis, when the zero-order fringe is identifiable within the 
holographically reconstructed image. Then, orders are unambiguously assigned to fringes, with 
respect to the zero-order fringe. The most popular of the existing techniques, used to assign the 
fringe order numbers, is based on multiple observations of images reconstructed from a single 
hologram or, in the case of electro-optic holography (EOH), "single observations" of multiple 
holograms, i. e., by varying K2. 

Multiple observations of a holographically reconstructed image must be made from 
various, noncoplanar directions. This can be accomplished by noting that the fringes and the 
surface of the object can nearly always be viewed in focus by simply using a sufficiently small 
observing aperture, i. e., one having a sufficiently large f/number. 
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The three-dimensional displacement vector, L, appearing in Eq. 4.2, is defined in terms of 
its Cartesian components as 

L = Lx"i + Lyj+Lzk   , (4.3) 

Therefore, in order to completely determine its unknown components Lx, L, and Lz, an "ideal" 
system of three equations of the type of Eq. 4.2 must be solved simultaneously. Such equations 
can be generated using the observation geometry shown in Fig. 4.2. Therefore, writing one 
equation of the type of Eq. 4.2, for each of the three observations shown in Fig. 4.2, we obtain 

K1-L = Q1    , (4.4) 

K2-L = Q2   , (4.5) 

and 

K3L = Q3   , (4.6) 

where the superscripts identify quantities corresponding to the specific directions of observation 
and where, according to Eq. 2.7, the sensitivity vectors are 

Kl = Kx*i + Kyj + Kl
zk 

= K* - K{ = KK]* -Klx)i + KK\y -Kiy)j + KKl
2z -Klz)k   , (4.7) 

K2=Kli + KJj + Kfk 

: Ki - Ki = KKlx - Klx)i+ k(K\y - Kly)j + k(K2
2z - KXz)k   , (4.8) 

and 

K3=K3
xi + KJj + Klk 

= K| - Ki = KKlc - Kix)i + KKiy - Kiy)j + k(Ki - Klz)k   . (4.9) 

Therefore, based on Eqs 4.7 to 4.9, we have 
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OBJECT 

:£*;: 

Fig. 4.2. Multiple observations of a holographically reconstructed image 
from three different directions. 

Kl
x = k[K^-Klx 

Kl = k\ K2v - K\y 2y' 

Kl=k Kl-K 2z' -lz (4.10) 

Kl ■ k\ K2x — Kix 

Kl=k^Ki-Klz 
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Expanding Eqs 4.4 to 4.6, we obtain 

KlLx + KlLv+KlLz = al    , 

KXLX + KyLy + KZLZ 

and 
KlLx + KlLv+KlLz = Q -r>3 

^3, 

(4.11) 

(4.12) 

(4.13) 

The set of Eqs 4.11 to 4.13 can be rewritten as a single matrix equation 

Kx   Ky Kz (L   \ fQl 1 
K\  Kj K\ Ly = Q2 

Kl  Ky Kl \LZ ) {& ) 
(4.14) 

Providing that K1, K2, and K3 are independent, the 3 x 3 matrix of the sensitivity vectors is 
nonsingular and the solution to Eq. 4.14 becomes 

M Kx Ky Kz 
-1 

fQl ^ 

Ly = K2
X K2

y K2
Z a2 

\L*    ) Kl Kl Kl _ {& j 
(4.15) 

where the superscript -1 indicates the inverse of the matrix of the sensitivity vectors; the 
elements of this matrix are defined by Eqs 4.10. 

Equation 4.15 gives solution for the three components of L when three noncoplanar 
sensitivity vectors are used to obtain the corresponding fringe-locus functions. This is the ideal 
case. In general, however, the matrix of the sensitivity vectors used in Eq. 4.14 is ill-conditioned 
because of the limited size of the hologram. As a result of this, substantial errors result in L. In 
order to overcome this drawback, more than three observations of the reconstructed image are 
made. This generates an overdetermined set of simultaneous equations, with one equation for 
each observation, that is, 

K1-L = 01 

K2-L = Q2 (4.16) 

where r is the total number of observations, e. g., five, as shown in Fig. 4.3. To facilitate solution 
of this overdetermined set of equations, Eqs 4.16 can be rewritten using the index notation as 
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Km • L = Qr m = 1,2 ? -^-?  • ••, (4.17) 

Obviously, no matter how careful and how many observations are made, there will 
always be some error E inherent in the measurements. Therefore, Eq. 4.17 may be expressed as 

Em = Km-L-Q" m = \, 2, (4.18) 

OBJECT 

K 

iiiiPlÄiil^Äii^S^ilii 

K2
4 

Fig. 4.3. Multiple observations of a holographically 
reconstructed image from five different directions. 

The goal of the analysis is to adjust the coefficients in Eq. 4.18 in such a way as to 
minimize the sum of all the errors squared, i. e., 
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X(£"I)2=X(Km-L-Qm)2 

m=\ m-\ 
m = 1, 2, ..., r (4.19) 

In order for the 

X (£"T 
m=\ 

to be minimum, the partial derivatives of Eq. 4.19 with respect to the components Lx, Ly, and Lz 

of the displacement vector L must be zero, that is, 

_d_ 
X (Em)2 

.m=\ 
X(Km-L-Q"f 0   , 

/n = l, 2, ..., r i = x,y, z, 

which results in the following system of three simultaneous equations 

M=1 «5=1 

X {K?LX + K^Ly + K™Lz)Ky =X £™Qm   , 
m=1 m=1 

X (£?i*+^+K?LZ)K? =£Kram . 
m=\ m=\ 

Equations 4.21 can be written in the matrix form as 

(4.20) 

(4.21) 

X£?£?  X*?£?   £*?*! 
m=\ m=\ m=l 

ILKyK™   XK^K™   X^i 
m=l m=l m=l 

£*?*? £*?*? £*?^: 
m=l m=l m=l 

and can be readily solved to obtain 

fh^ 

\^Z     ) 

'O 

\LZ j 

(   r \ 

X^fQm 

V m=i J 

£K?K?  tK?K™  ±K™K? 
m=\                    m=\                    m=\ 

-1 

X^m 

liKfK?  X^W  %K™K? 
m=\                   m=\                  m=\ »1=1 

I,K?Ky  ZKTK™  ZK?!?? 
m=\                  m=\                  m=\ 

(4.22) 

(4.23) 
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The result shown in Eq. 4.23 can be obtained in a much more direct way if we write Eq. 
4.17 in a condensed matrix form as 

KL = Q   , (4.24) 

where K is a rectangular r x 3 matrix of the sensitivity vectors and Q is a column r x 1 matrix of 
the fringe-locus functions. 

Defining the error vector E in much the same way as it was done in Eq. 4.18, we can 
rewrite Eq. 4.24 as 

E = KL-Q (4.25) 

and write the equivalent of Eq. 4.19 as 

E2 = E-E = ETE=(KL-U)T(KL-U)   . (4.26) 

Noting that the transpose of a product of two matrices is equal to the product of the transposes of 
the two matrices with the order of multiplication reversed, Eq. 4.26 can be rewritten to obtain 

E2 = (LTKT-QT)(^-Q) = LrKTau-UTKL-LTKTU + QTQ.   . (4.27) 

In order to minimize E2, the partial derivatives of Eq. 4.27 with respect to the components 
of L must be zero, that is, 

^ = 0   , i = x,y,z   . (4.28) 

Therefore, applying Eq. 4.28 to Eq. 4.27 we obtain 

KTKL + LTKTK-QTK-Km = 0   , (4.29) 

wherefrom, after rearranging, we get 

(KTKL-KrQ) + (LTKTK-UTK) = 0   , (4.30) 

or 

KT(KL-U) + (KL-U)TK=0   . (4.31) 

Examining Eq. 4.31, it becomes apparent that both terms on the left-hand side of the 
equality sign are identical to each other. Therefore, in order for Eq. 4.31 to be satisfied, both of 
these terms must be zero. Hence, we obtain 

KT(KL-U)=KTKL-Km = 0   , (4.32) 

or 
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KTKL = KTQ.   . (4.33) 

It should be noted, at this time, that Eq. 4.33 is nothing more than Eq. 4.24 with both 
sides premultiplied by the transpose of the rectangular matrix K. This procedure decreased the 
rank of the rectangular matrix K to a square 3x3 matrix KTK and yields the solution for the 
displacement vector L which has the least-squares-error, that is, 

L = [KTK\-l(km)   . (4.34) 

It is interesting to note that the square matrix KTK of Eq. 4.34 may be expressed as the 
sum of all r matric products of the sensitivity vectors Km, that is, 

KTK= iKm®Km   , (4.35) 
m=l 

where the procedures of Chapter 3 were used. Therefore, combining Eqs 4.34 and 4.35, we 
obtain 

lKm®K" 
Lm=l 

-1 

(IPO)   . (4.36) 

Comparing Eqs 4.23 and 4.36 it becomes obvious that both equations are identical. 
However, Eq. 4.36 is much more compact than Eq. 4.23 and, therefore, greatly facilitates 
holographic numerical analysis. 

4.2. Determination of displacements when fringe order is unknown 

In holographic analysis of objects for which the entire surface has moved and/or 
deformed it is often impossible to identify the zero-order fringe and, therefore, procedures of 
Section 4.1 do not apply. Instead, we may only determine the fringe orders to within an additive 
constant. With this in mind, we will set up a system of equations of the type of Eq. 4.24 and 
solve for the displacement vector. To reduce measurement errors, we will use an overdetermined 
set of equations and solve for L which has the least-squares-error. 

To set up the system of equations, we must determine the fringe-locus functions to within 
an additive constant. Let us call this constant Q0 and let us bear in mind that this constant comes 
from the lack of knowledge of the absolute fringe order. Then, for the first "observation" of the 
holographically reconstructed image, as shown in Fig. 4.4, we can write an equation relating Q0 

to the scalar product of L with K1, corresponding to the observation along the direction specified 
by the vector K2, as 

K'-h = a0   , (4.37) 
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where the sensitivity vector is as defined by Eq 4.7. Next, "counting" the fringes that pass across 
the point of interest on the object as the view is being changed from the observation along the 
direction of K2 to the observation along the direction of Kj;, while continuously observing the 

OBJECT 

Fig. 4.4. Multiple observations of a holographically reconstructed 
image with the first direction of observation chosen arbitrarily. 

point of interest on the object, we determine the (observed) fringe order, more commonly known 
as the fringe shift, n1'2, which relates to the change, AQ1-2, in the fringe-locus function via 

AQ1>2=27t«1'2 

thus giving 

(4.38) 
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K2-L = n0 + AQ1'2   . (4.39) 

Following the procedure used to obtain Eq. 4.39, we can determine the fringe shifts nhm 

for other changes in the direction of observation from that along the direction of K2 to those 
along the directions of K™, one at a time. The sensitivity vectors corresponding to these 
observations can be described by the system of equations, similar to Eqs 4.7 to 4.9, that is, 

Km = Kfi + Kfj + £?£ = K£ - Ki 

= k(K^ - KiSi + KK% - Kiy)j + KKl - Ki,)k   , (4.40) 

m-l,2,...,r   , 

where r is the total number of observations. 

Based on Eq. 4.40, the components of the sensitivity vectors can be defined as 

£? = £(££-£,*)   , m = l,2-,r   , 

K™ = k(K%-Kly)   , m = l,2-,r   , (4.41) 

Kf = k(Kl-Klz)   , m=\,2-,r   ■ 

The changes in the fringe-locus function, corresponding to the sensitivity vectors defined by Eq. 
4.40, can be expressed as 

AQl'm = 2nn1>m    , m = \,2-,r   , (4.42) 

where it should be realized that when m = \, AQ1'1 = 0. 

Equations relating the sensitivity vectors of Eq. 4.40 and the changes in the fringe-locus 
functions of Eq. 4.42 to the displacement vector L are 

K'"-L = n0+AQ1'm    , m = l,2,-,r   ■ (4-43) 

It should be noted that in the approach described by Eqs 4.40 to 4.43, the number of 
observations must be equal to or greater than four (i. e., r > 4) because in addition to the three 
unknown components of the displacement vector L we must also account for O0 which is an 
unknown. Therefore, from Eq. 4.43 we have 

Km-L-Q0=tell'm    , m = l,2,...,r   . (4.44) 

Since L and £20are common to all r equations, Eq. 4.44 can be rewritten in a matrix form 
as 
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[K,-l](L,Q0)=AQ   , (4.45) 

where [^,-l] is a rectangular rx4 matrix, (L,Q0) is a column 4 x 1 matrix, and AH is a 

column rx 1 matrix. Renaming the [^,-l] matrix of the sensitivity vectors as G, that is, 

[K,-1] = G   , (4.46) 

we can rewrite Eq. 4.45 as 

G(L,Q0) = AQ.   . (4.47) 

Finally, Eq. 4.47 can be solved to obtain 

(JL,£l0) = [GTG\-1(GTm)   , (4.48) 

or 

(L,ß„) = XGm®Gm 
-1 

(G
T

AU) (4.49) 

It should be noted that the usual methods of holographic displacement analysis eliminate 
the unknown Q0 from the system of equations by subtracting one member of the set from the 
rest, or by subtracting pairs of equations. The method given in this section is preferred because, 
in the subtraction process, the effects of some measurement errors can be escalated. However, 
we should realize that in the case when the first observation is made through a point lying within 
the center of all points through which observations are made, as shown in Fig. 4.5, it does not 
matter whether we introduce the additive constant Q0 and use Eq. 4.49 in determination of 
displacements, or simply use the fringe shifts alone. The results will be the same. 

The mathematical developments of this section require that all changes in the fringe-locus 
function be determined in reference to the initial direction of observation. This requirement is 
not a result of a mere mathematical convenience, but rather of a crucial practical need. This need 
is based on recognition that in order to minimize influence of the measurement errors, the initial 
direction of observation, K2, be established in such a way that the greatest changes in the 
observation perspective(s), for a given holographic setup, can be achieved. This, in turn, allows 
determination of the largest changes in the fringe-locus function, AQ, corresponding to the 
changes in the directions of observation, in reference to the K\, and leads to minimization of the 
effects that the measurement errors have on the AQ.. Finally, minimization of errors in 
determination of AH, for a known sensitivity vector K, yields (L, Q.„) from Eq. 4.49 that gives 
the best results for the particular holographic setup used. 

It is stressed that in the cases when we want to make observations in an arbitrary fashion, 
with the first observation not being through the central point, only Eq. 4.49 can be used to 
determine the displacements. Use of other equations will give incorrect results. 
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Fig. 4.5. Multiple observations of a holographically 
reconstructed image with the first direction of observation 

being in the center of all points through which observations 
are made. 

4.3. Determination of displacements from multiple holograms 

In certain applications, it is either not practical or, even, not possible to record holograms 
large enough to allow multiple observations of the reconstructed images. In some other 
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applications, the holograms do not exhibit any parallax at all. This is certainly the case with 
electro-optic (also referred to as electronic, and/or TV) holography, discussed in Chapter 8, 
where holograms are recorded electronically on CCD arrays and exhibit no parallax. Therefore, 
procedures discussed in Sections 4.1 and 4.2 cannot be used in these applications. However, 
even in the case of holograms that do not exhibit parallax, we can easily determine two 
components of the object displacement vectors in the directions transverse to the direction from 
which the hologram was recorded. The vector sum of these two components may be referred to 
as the observed displacement vector and it can be denoted as L0*. This vector is a result of a 
projection of the actual (unknown) displacement vector L onto a plane normal to the direction of 
observation, i. e., the plane normal to the direction from which the hologram was recorded. As 
such, h0b provides only a two-dimensional information on the displacement of the object, in a 
local coordinate system which is based on the local direction of observation. However, if we are 
able to record more than one hologram, each from a different, non collinear direction, then each 
of these holograms can be interpreted to determine the corresponding observed displacement 
vectors. A set of simultaneous equations representing these observed displacement vectors can 
be solved for the unknown L using projection matrices, as follows. 

Let us assume that r observations are made of the holographically reconstructed image. 
A 

If each of these observations is made along a direction of a unit vector £2, which, based on Eqs 
2.5 and 2.6, can be defined as 

£?=^K?    , (4.50) 

where K™ is the average direction of the m-th (m=l, 2, ..., r) recording, then the corresponding 
projection matrices P%2 can be expressed as 

Pl2=l-k^®k^    . (4.51) 

Therefore, for each of the r observations, the observed displacements ~L™b (i. e., the 
displacement vectors which are completely defined by two components transverse to the 
direction of observation) can be related to the actual (unknown) displacement vector L (i. e., the 
vector which requires three components for a complete definition) by means of the corresponding 
projection matrices, P% , i. e., 

L0A =/>^2L 

L2
0*=ii2L 

(4.52) 

Kb=PK2L 
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Since the displacement L is common to all Eqs 4.52, this system of equations can be written in a 
matrix form as 

4* 
Job 

Job 

1 
K2 
2 
K2 

PrK. 

(4.53) 

and Eq. 4.53 can be solved to obtain 

Y.PZ 
Lm=l 

XL ob 
m=l 

(4.54) 

Equation 4.54 shows that the actual object displacement L is equal to the product of the inverse 
of a 3 x 3 matrix formed by summation of all r projection matrices P\2 with a column matrix of 

the sum of all r observed displacements L^,. 

A 

The only parameters that are needed to evaluate Eq. 4.54 are the unit vectors K% and the 
corresponding observed displacements L™6. The unit observation vectors are easily determined 
from the illumination/observation geometry, as discussed in Chapter 2, while the observed 
displacements relate directly to the fringe patterns seen during reconstruction of the holographic 
interferograms and are determined from the spatial distributions of the fringe-locus function Q. 

It should be realized, at this time, that Eq. 4.54 applies not only to the cases when the 
single observations are made through multiple holograms, Fig. 4.6, but also when fringe parallax 
is used in analysis of a single holographic image, Fig. 4.7. 
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IMAGE 

Fig. 4.6. Use of multiple holograms in analysis of a single image. 

(MAGE 

HOLOGRAM 

Fig. 4.7. Multiple observations of an image through a single hologram. 
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5. DETERMINATION OF RIGID-BODY MOTIONS 

Development of modern avionics requires rapid, full surface inspection techniques that 
can lead to quick identification of areas experiencing severe vibrations and high stress 
concentrations. Recent developments in holography and speckle interferometry have allowed 
development of such techniques. However, application of these techniques is often limited by 
the fact that fringe patterns yield undesired information due to rigid-body motions of the entire 
assembly, superimposed on the motion of the component studied. It should be noted that use of 
ultra-fast pulsed lasers does not preclude formation of fringes due to rigid-body motions. It is 
not the exposure time (duration of a pulse) which is usually several nanoseconds, but the time 
between the exposures, normally several orders of magnitude higher, that plays an important role 
in recording of holograms. 

In this chapter, a method for determination of rigid-body motions is presented1. In 
addition, a procedure that allows use of the rigid-body motions in subsequent analysis of relative 
motions of deformed points on the object is also presented. 

5.1. Mathematical considerations 

Rigid-body motions of any object may be resolved into bulk body translation L0 and 
rotation 6, therefore, we can write that the motion L, at any point i on the object can be defined 
as 

L,=L0+R;xe   ,i=\,2,...,r   , (5.1) 

where r is the total number of points considered and R, is the position vector, Fig. 5.1, from the 
origin of arbitrarily chosen coordinate system to the i-th point on the object defined as 

A A A 

Ri=xti + yj + Zik   ,i=l,2,...,r   , (5.2) 

A       A A 

with xt, y,-, and Zt being components of R, in directions of unit vectors i,j, and k of the 
Cartesian coordinate system, respectively. 

In Eq. 5.1, the vectors L,, L0, and 0, defining rigid-body motion, bulk body translation, 
and body rotation, respectively, are defined as 

A A A 

Li=Lixi + Liyj+Lizk   ,        i=l,2,...,r   , (5.3) 

L0=LoJ+LOyj + L0zk   , (5.4) 
and 

Q = ex"i+eyj+ezk . (5.5) 

Now, we may write matrix equivalent of Eq. 5.1 as 
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LOADED 
BLADE 

Fig. 5.1. Schematic representation of the geometry for holographic 
determination of rigid-body motions. 

L, = [//?,-] 
0 

i=l,2,...,r   , 
V u   J 

where the i-th displacement vector L,- was written as a column matrix 

(5.6) 
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L,= 

Lllx 

u7 

i= l,2,...,r (5.7) 

\^'z    J 

identity matrix/ was defined as 

" 1 0 0 " 
0 1 0 
0 0 1 

(5.8) 

the i-th space vector R, was rewritten in a matrix form, viz., 

Rf 

0   -n  y« 
zt    0   -xi 

-yi xi   0 

z'=l,2,...,r   , (5.9) 

and the components of L0 and 6 vectors, given in Eqs 5.3 and 5.4, respectively, were combined 

in a six by one matrix 

e 

{ 0 J 
defined as 

(5.10) 

'-'Ox 

'-'Oy 

Loz 

Qx 

V 9z   j 

One might think that two equations of the type of Eq. 5.6 would be sufficient to 
determine the six unknowns, that is, L0x, L0y, L0z, Bx, By, and 9Z. However, the square matrix 
[7 Ri~\, which results when r = 2 in Eq. 5.6, is singular and, therefore, does not have an inverse. 
Hence, in the foregoing analysis we need three or more object points (that is, r > 3 in Eq. 5.6 
which results in a rectangular 3r x 6 matrix [7 R{~\, z = 1,2,..., r. The use of an overdetermined 
set of equations is also advantageous when we realize that because of the limited solid angle the 
hologram subtends at the object large errors might result in determination of the rigid-body 
motions. Hence, expanding Eq. 5.6 for r points on the object we obtain 

(5.11) 
M 

L2 

' I Ri ' 
I R2 fu) 

VL' J 1   Rr  _ 
I © J 

Equation 5.11 can be written in a more condensed form as 
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L = E t-'o 

e (5.12) 

where we have defined 

'O 

and 

L2 

I R2 

1 Rr 

(5.13) 

(5.14) 

Premultiplying both sides of Eq. 5.12 by a transpose of the rectangular matrix E we obtain 

ETL = ETE 
e (5.15) 

This procedure reduces the rectangular 3r x 6 matrix E to a square 6x6 matrix £, that is, 

I = HrH   , (5.16) 

and gives the solution of the matrix of rigid-body translation and rotation, which has the 
least-square-error, which can be expressed as 

•L'o 

e = Z,~WL (5.17) 

where \ 1 is an inverse of the matrix defined by Eq. 5.16. Using Eq. 5.17 and considering three 
or more points on the surface of the object that experienced rigid-body motion, the corresponding 
translations and rotations can be determined from holograms. If we are also able to determine 
total translation L,P and total rotation 0/> of a deformed point P on the object, then, we can 
determine motions L/>re; and QPrel of this point P relative to the rest of the object. In order to do 

so, we must first determine the rigid-body translation L,Pr.  at the point P on the object, defined 

by the position vector RP as shown in Fig. 5.1, because translations are position dependent. 
Therefore, using an equivalent of Eq. 5.6, we can write an expression for rigid-body translation 
of point P as 
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Lp„,=P*p] 
JL<o 

e 
(5.18) 

where L0 and 6 have values determined from Eq. 5.17 and RP is the position vector from the 
origin of the coordinate system to the point of interest on the object. Next, we subtract the LPris, 
given by Eq. 5.18, from the total translation LP which results in a translation LPrel of P relative 

to the rest of the object, i. e., 

LPrd=LP-LPrig   . (5.19) 

Noting that the rigid-body rotations are independent of the position on the surface of the 
object we can subtract 9 (computed from Eq. 5.17) directly from total rotation 6/> which will 
result in a relative rotation QPrel of point P, viz., 

ePrd = dP-e . (5.20) 

Equations 5.19 and 5.20 allow determination of translations and rotations at any 
deformed point on the object relative to the rest of the body. For example, if we wish to 
determine motions of a point on a blade constituting a part of a turbine stage assembly, we can 
solve Eq. 5.17 by choosing three points on the disk and shaft. Let us assume that we have 
decided to compute translations and rotations of the disk assembly based on motions of points 
defined by position vectors Ri, R2, and R3. Then, solution of Eq. 5.17 will result in the 
components of vectors L0 and 0. Next, using Eq. 5.18, rigid-body translation of point P at a 
known Rp, on the blade, can be determined. Finally from Eq. 5.19 we can compute L/>rc/ and 

using computed value of QP we can calculate QPrel from Eq. 5.20. Vectors L,PreI and QPrd relate 

directly to the force system that was acting on the blade when the measurements were made. 

5.2. References 

5.1. R. J. Pryputniewicz, "Holographic determination of rigid-body motions," Appl. Opt., 
18:1442-1444, 1979. 
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6. DETERMINATION OF STRAINS AND ROTATIONS 

Accurate determination of object's strain is of great interest in mechanics because it may 
correlate with the structural failure. As a direct outcome of this need, numerous methods were 
developed to perform the necessary diagnosis. Some of these methods are based on the 
principles of hologram interferometry which, with its high sensitivity, has found strong 
applications in analysis of small strains. This becomes obvious when we realize that object 
deformations, on the order of a fraction of a wavelength, will cause fringes to be formed during 
reconstruction of a hologram which recorded this deformation. In this way, any changes in the 
object's state of stress, which cause changes in its shape and/or deformation, can be measured. 

Holographic strain analysis has been introduced in a classical paper by Ennos1 in 1968. 
Since then, a number of different applications for measurement of small strains were 
developed2"6. For example, Dändliker et al.3'4 have developed a sophisticated optoelectronic 
fringe interpolation method, Schumann and Dubas5'6 have advanced a complicated theory of 
fringe localization together with a complex apparatus of coupled telescopes, while Stetson7'8 

presented a theory, based on a concept of a fringe-vector, that permits determination of strain 
when it can be assumed to be homogeneous over a sufficiently large region of a sufficiently 
three-dimensional object. 

The Stetson's approach is called the fringe-vector method of holographic strain analysis. 
This method recognizes that any combination of a homogeneous strain, shear, and rotation of an 
object, yields fringes on the surface of the object, which can be described by a single vector, the 
fringe-vector. The fringe-vector method was generalized by Pryputniewicz and Stetson8,9 by 
introducing a procedure which accounts for variations of the sensitivity vector across the object 
and this, therefore, allows application of the method even in the presence of a perspective 
variation in the illumination or observation directions. 

If an object undergoes a homogeneous deformation and/or rotation while a hologram is 
being recorded, then, during the reconstruction of the hologram, the object will be seen covered 
by a pattern of fringes that would appear to be generated along the lines of intersection of the 
surface of the object with a set of parallel, equally spaced planes called fringe-locus planes. For 
example, holographically reconstructed three-dimensional object with flat surfaces will be seen 
covered by a pattern of parallel, equally spaced fringes, Fig. 6.1, as though it were intersected by 
a set of the fringe-locus planes. These fringe-locus planes are uniquely defined by a 
fringe-vector, K/, whose magnitude is inversely proportional to the spacing between the planes 
and whose direction is normal to them, Fig. 6.2. Therefore, observation of the fringe patterns 
allows determination of the fringe-vector. Since fringe-vectors are related to the holographic 
sensitivity vectors by a matrix transformation which describes strains, shears, and rotations of the 
object, multiple observations, from noncoplanar directions, of the holographically reconstructed 
image allow determination of the desired strain-rotation matrix. 

The procedures for determination of the fringe-vectors, strains, and rotations, from 
holographically reconstructed images, are discussed in this Chapter. 
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.OBJECT 

FRINGES 

Fig. 6.1. A photograph of a reconstruction 
from a double-exposure hologram recording 
a rigid-body rotation of the object. 

FRINGE-LOCUS 
PLANES 

Fig. 6.2. Formation of fringes in hologram 
interferometry: the surface of the object 
appears to be intersected by a set of equally 
spaced fringe-locus planes which are 
represented by K/. 

6.1. Spatial dependence of the fringe-locus function 

Let us assume that an object is illuminated with spherical wavefronts from a point defined 
by a position vector R, and observed with a spherical perspective from a point given by R2, Fig. 
6.3. 

As a result of some deformation and/or rotation between exposures of, e. g., a 
double-exposure hologram, the object would be reconstructed covered with fringes. These 
fringes will be generated by the fringe-locus function which is a scalar function of space. 

Let us also assume that the value of this fringe-locus function at a point P on the object, 
Q(K, ~Rp), is known, where Rp is the position vector from the origin of the Cartesian coordinate 
system to the point of interest and K is the sensitivity vector, as defined in Chapter 2. Then, the 
fringe-locus function QQ, at a nearby point Q on the object, may be expressed in terms of the 
value of Q and its derivatives at P, by means of the Taylor series expansion, that is, 
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Q(K,Rß) = Q(K,R?) + ARpe 

: Q(K, RP) + ARPQ ■ Kf+^ARpgT/ARpQ +. 

where the third and higher order terms were neglected. 

ARBITRARY   OBJECT 

(6.1) 

-OBSERVATION   POINT ILLUMINATION POINT 

Fig. 6.3. Illumination and observation geometry for interpretation of 
holograms using the fringe-vector theory. 

The second term on the right side of Eq. 6.1 represents a scalar product of the differential 
position vector, 

ARPQ = Axpgi + AypQj + AzpQk   , 

with the fringe vector, which is defined as the gradient of Q, that is, 

Kf = KfJ+KfJ+KfJc 

= Qx^i+ Q.yr}+ nz4=|^/ + ^ß-j + $ß-k 
dxp     ayp     dzp 

= V*Q = V*(K-L) = (Vtf®L)K+(VÄ®K)L   , 

where VR is the gradient operator in the real space, 
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and where ® denotes the matric product which was defined in Chapter 3. 

It should be noted that Eq. 6.3 takes into account the first order (i. e., linear) variations in 
Q. The second order variations in Q. are accounted for by the last term on the right side of Eq. 
6.1, where the fringe-tensor, Tf, represents the linear variations in Kj.. Therefore, expansion of 
the first two terms on the right side of Eq. 6.1 leads to formulations allowing holographic 
numerical analysis of rigid-body motions and homogeneous deformations, while all three terms 
let us interpret inhomogeneous strains. 

6.2. Rigid-body rotations and homogeneous strains 

The second term on the right side of Eq. 6.1 describes a change in Q between points P 
and Q. On the surface of the object, where fringes are visible, Q. is defined as 

Q = K • L = {Kxi+ K}J+ Kzk) ■ (LJ+ Lyj+ Lzk) 

= KxLx + KyLy + KzLz   . (6.5) 

Differentiating Eq. 6.5, as required by Eq. 6.3, we obtain 18 terms which can be described as a 
sum of the products of two vectors and two matrices, that is, 

K/=K? + Lg   , (6.6) 

where 

g=g2-gi = ^-(l-k2®k2)-j-(i-kl®k1) = ^-PK2-j-PKl  . (6.7) K0 Ki K0 Ki 

In Eq. 6.7, R0 and Rt are radn of curvature of the illumination and observation perspectives, 
respectively, Fig. 6.3, while P^ and PK2 represent the projection matrices based on the unit 
vectors defining average illumination and observation directions, respectively. 

What is of interest in Eq. 6.6 is the transformation matrix f, which can be decomposed 
into a matrix of strains and shears, 8, and a matrix of rotations, 0, that is, 

? = £+0   . (6.8) 
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In order to solve Eq. 6.7, for the transformation matrix f, multiple observations of the 
holographically produced image must be made. For each observation, the sensitivity vector K 
and the fringe vector K/ must be determined that best fit data for the entire region examined. 
Also, multiple views are used to obtain displacement L at a point of interest on the object. For 
each view, the matrix g is computed and multiplied by L to obtain perspective_correction to K/. 
From multiple views, a set of equations of the type of Eq. 6.7, with the matrix f common to all, 
is generated and solved to obtain 

~f = [KTk\-i[KTKfc]   , (6.9) 

where 

Kfc = Kf-Lg   , (6-10) 

is the matrix formed by the fringe-vectors corrected for perspective. Decomposition of the 
matrix f, computed from Eq. 6.9, into a symmetric part e and the antisymmetric part 6, that is, 

E = l\f+fT)   , (6-11) 

and 

gives strains and shears, and rotations, respectively. 

When the object deformations are not homogeneous over the entire body under study, 
they may, nonetheless, be approximately so over a small region of its surface, and projection 
matrices are very helpful in formulating the solution to this problem. It can be shown that, in this 
case, the surface strain-rotation matrix /"is 

fs=fPn     , (6-13) 

where P„ is the projection matrix defined as 

Pn=l-h®h    , (6-14) 

with h being the local surface normal. 

It should be noticed that derivatives of the observed displacement are not generally equal 
to surface strains and rotations of the object. They become approximately equal to the extent that 
the viewing direction can be made parallel to the surface normal. 
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7. INTERPRETATION OF TIME-AVERAGE HOLOGRAMS 

7.1. Introduction 

Transverse vibrations of beams are of primary interest in many engineering applications. 
However, the conventional methods, both analytical and experimental, are rather limited when it 
comes to vibration analysis. In general, the analytical methods, including the finite element 
methods (FEM), require accurate knowledge of boundary conditions and material properties. 
The experimental techniques, on the other hand, are in general invasive and frequently take into 
consideration only a few points, on the studied structure. The results obtained from analysis of 
these limited experimental data are then "extrapolated" to predict the dynamic behavior of the 
entire structure. Also, as the vibration frequency increases, the corresponding displacement 
amplitude decreases making it difficult to measure with conventional instrumentation. In 1965, 
however, the method of hologram interferometry was developed1 which provided means of 
measuring vibrations of very small amplitudes. 

In hologram interferometry of vibrating objects, two (or more) waves, correlated in 
frequency and phase (e. g., emitted from a single laser), interact with each other because of the 
differences in their path lengths. The most popular technique for recording of holograms is the 
off-axis method2. In this arrangement, Fig. 7.1, the highly coherent and monochromatic laser 
light is divided into two beams by means of a beamsplitter. One of the beams, in the case shown 
that transmitted through the beamsplitter, is expanded and filtered (by means of a microscope 
objective and a pin-hole assembly) and is directed (by mirrors) to illuminate the object to be 
recorded. This beam, modulated by reflection from the scene being recorded, is called the object 
beam. It carries instantaneous information about the configuration of the object. The other 
beam, i. e., that reflected from the beamsplitter, is also expanded and spatially filtered, but it is 
directed by mirror(s) in such a way that it does not interfere with the object. This is the reference 
beam. The reference beam is also directed to overlap with the object beam. The two beams 
interfere in the regions of space where they overlap. A photosensitive medium placed in this 
region records the resulting interference pattern. The developed medium, when reilluminated 
with the original reference beam, faithfully reconstructs the image of the recorded object. 

In practice, multiple object configurations are recorded in the same medium. Therefore, 
during reconstruction of such holograms multiple images are produced, i. e., one image for each 
recorded object configuration. Since each of these images is reconstructed in coherent light, they 
interfere with each other in any region of space where they superpose. As a result of this, the 
reconstructed image of the object is seen covered by a set of bright and dark interference fringes. 
These fringes are a direct measure of changes in the object's position and/or shape that occurred 
while the hologram was being recorded, as discussed in Chapters 4 to 6. 

Depending on the particular application, the interference fringes may be recorded using one 
of the following techniques3: (i) double-exposure hologram interferometry, (ii) real-time 
hologram interferometry, (iii) time-average hologram interferometry; the time-average technique 
can be further subdivided into (i) stroboscopic time-average hologram interferometry and (ii) 
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continuous time-average hologram interferometry. Each of the above techniques has certain 
advantages over the others in specific vibration measurement applications. 

LASER 

BEAM 
SPLITTER 

LENS-PIN HOLE , 
ASSEMBLY j 

MIRROR 
(3 PLACES) 

Fig. 7.1. Schematic representation of a setup for recording and reconstruction of 
continuous time-average holograms.   Ki is the vector giving direction of 

illumination (during recording of a hologram), from point source defined by 
position vector Ri to a point P on the object specified by R/>. The observation 

vector K2 is propagating from P to a point on hologram at R2, through which the 
reconstructed image is viewed. 

The double-exposure method is uniquely suited for studies of transient vibrations; it can be 
used equally well in studies of resonating objects. However, it depends on the use of a pulsed 
laser which delivers two submicrosecond pulses synchronized with motion of the object. During 
reconstruction of a double-exposure hologram, the image of the object is modulated by 
cosinusoidal fringes. Although interpretation of such fringes is straightforward, cost of the 
pulsed laser system is rather high. 

The real-time method requires the use of a liquid gate plate holder, or some mechanical 
micropositioner, to precisely locate/relocate a developed hologram. The image reconstructed 
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from this hologram, when superposed onto the original object, interferes with the light field 
modulated by vibrating object, at the instant the object moves. This method is particularly useful 
in identification of object resonances. 

The stroboscopic time-average method is really an extension of the double-exposure 
method, except that now a continuous wave (CW) laser can be used to record a hologram. In this 
application, the CW laser beam is "chopped" into short pulses synchronized with the object 
frequency; the pulse length depends on the nature of the vibration studied. To effectively use 
this method, object vibration must be monitored continuously to assure proper characteristics of 
the illuminating beam. This synchronization must be maintained over many vibration cycles, to 
provide for sufficient exposure of the recording medium. Although interference fringes produced 
during reconstruction of a stroboscopic hologram are cosinusoidal and are straight-forward to 
analyze, the electronic apparatus, needed to produce good quality images, may be complex and 
expensive. 

In continuous time-average method, a single holographic recording of an object, 
undergoing a cyclic vibration, is made. With the (continuous) exposure time long in comparison 
to one period of the vibration cycle, the hologram effectively records an ensemble of images 
corresponding to the time-average of all positions of the object while it is vibrating. During 
reconstruction of such a hologram, the interference occurs between the entire ensemble of images 
with those recorded near zero velocity (i.e., maximum displacement) contributing most strongly 
to the reconstruction. The interference fringes observed are of unequal brightness. In fact, they 
vary according to the square of the zero order Bessel function of the first kind, J2

0, as shown in 
Fig. 7.2 and as will be demonstrated mathematically in this chapter. 

The continuous time-average method is the most popular of the holographic methods 
discussed herein, when it comes to vibration analysis. The existing holographic laboratories are, 
in general, well equipped to perform continuous time-average studies. The apparatus is the same 
as that used in recording of conventional holograms, except for the mechanism to "drive" the 
object. The driving mechanism can be a piezoelectric shaker, a loud speaker, a magnetic 
oscillator, a flowing fluid, etc. However, regardless of the method used to excite the object, the 
(continuously) time-averaged interference fringes are the same in nature. In the following 
sections, the discussion will center on quantitative interpretation of the (continuous) time-average 
holograms. 

7.2. Mathematical considerations 

The time-average holograms can be recorded using a setup similar to that shown in Fig. 
7.1. The time varying displacement vector, L,(x, v,z, t), of a vibrating object is a function of 
spatial Cartesian coordinates x, y, and z, and also a function of time t.   For cosinusoidal 
excitation, this time varying displacement vector can be expressed as3"5 

Lt(x,y,z,t) = Lt(x,y,z)cos((i>t)   . (7.1) 
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In Eq. 7.1, L0 is the magnitude of the displacement of the object which is vibrating at a circular 
frequency co. This object motion causes temporal changes, Clt(x,y,z,f), in phase of the light field 
modulated by interaction with the vibrating object. These phase changes can be represented by 
the scalar product ofLt(x,y,z,f) with the sensitivity vector K(x,y,z), that is, 

Clt(x,y, z, t) = K(x,y, z) ■ L,(x,y, z, f)   , (7.2) 

where K is as defined in Chapter 2. Therefore, the complex light field, Fv(x,y,z,t), propagating 
away from the vibrating object, can be represented as 

Fv(x,y, z,f)=A0 (x,y, z)exp[/(p(x, y, z) + iQ0(x,y, z, t)]   . (7.3) 

Holograms of vibrating objects are recorded by interfering the time varying field defined by 
Eq. 7.3 with the temporally invariant reference field. As a result of this interference, the complex 
light field, F>,(x,y,z, t), in the plane of the hologram, or some recording medium, is 

Fh(x,y,z, f) = A0(x,y,z) exp[z(p0(x,y,z) + iQt(x,y,z, t)] 

+ Ar(x,y,z)txp[i(pr(x,y,z)]   , (7.4) 

where A0 and (p0 are the amplitude and phase, respectively, of the (object) illuminating light field 
propagating in the space defined by the x, y, and z coordinates, Q.t is the fringe-locus function 
which represents temporal changes in phase of the light reflected from the object, and Ar and cpr 

are the amplitude and phase, respectively, of the reference beam. 

The medium, in which a hologram is recorded, responds to intensity h(x,y,z,t) of the field 
given by Eq. 7.4. The value of this time-varying intensity is expressed as the product of 
Fh(x,y,z, t) and its conjugate F^(JC,y,z, t), that is, 

Ih = FAF^ = [A0exp(/cp0 + i£it) + Arexp(/(pr)][A0exp(-fcp0 - iQ.,) + Arexp(-Kpr)] 

= A2+A2+F,.F:+F;FV    , (7.5) 

where the arguments (x,y,z) and (x,y,z,t) were omitted for simplification. 

The image recorded within the photosensitive medium is the time-average of Ih over the 
exposure time T, thus 

±fIhdt = A2
0+A2

r + yr\
TF*vdt + l-F;\TFvdt   . (7.6) 

When the time-average hologram is developed and illuminated by the original reference field Fr, 
we obtain 
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Fri f Ihdt = A2Fr+A2Fr+A2exV(2i<$>A \T ¥*vdt+A2± \TFvdt   . (7.7) 

The first two terms on the right hand side of Eq. 7.7 represent an attenuated undiffracted 
reconstruction field, the third term gives rise to the conjugate image, while the fourth term is 
proportional to the time-average of the original object field and describes formation of the virtual 
image. Therefore, the developed hologram, when illuminated by Fr, produces an object wave 
which has a complex amplitude proportional to the time-average of Fv over the time internal T, 
that is, 

^ f Fvdt=T- f A0(x,y,z)exp[iq>(x,y,z) + iQt(x,y,z,t)]dt 

= Y0(x,y,zA\Texp\i&t(x,y,z,t)]dt   . (7.8) 
i Jo 

The time-average integral appearing in Eq. 7.8 is called the characteristic function6 and is 
denoted by Mr, that is, 

±\Tex-p[int(x,y,z,t)]dt = MT(x,y,z)   . (7.9) 
l  J o 

The time-average integral of Eq. 7.9 may be evaluated as J0(\Qt\), the zero-order Bessel 
function of the first kind of the magnitude of the argument Q.t. Based on Eq. 7.2, the magnitude 
of Q, is 

|Q,| = |K-L,| = |(K2-Ki)-L,| 

= \k[(K2x-Klx)Ltx + (K2y-Kly)Lty + (K2x-Klz)Lt:]\   , (7.10) 

where the arguments (x,v,z) and (x,y,z,t) were omitted for simplification, K\x, K2x, K\y, ..., are 
the components of the unit illumination and observation vectors defining average directions of 
Kj and K2, respectively, while Ltx, Lh, and Lt: represent the Cartesian components of Lt. 

Thus, according to Eqs 7.8 and 7.9, the reconstructed complex amplitude responsible for 
formation of the virtual image is proportional to F0 • MT, while the corresponding intensity 
Iim(x,y,z), of the reconstructed image, is 

Iim = FlM2
T = AUK\at\)   ■ (7-11) 

Equation 7.11 shows that the virtual image obtained during reconstruction of the 
time-average hologram is modulated by a system of fringes described by the square of the 
zero-order Bessel function of the first kind. Thus, for nontrivial values of A0, centers of the dark 
fringes will be located at those points on the surface of the object where J0(\&t\) equals zero, 
Fig. 7.2. 
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Fig. 7.2. The zero order Bessel function of the first kind and its 
square, defining location of centers of dark fringes seen during reconstruction of 

continuous time-average holograms of vibrating objects. 

The images formed during reconstruction of the time-average holograms of objects 
undergoing periodic motions are modulated according to the variations of J0. The J0 fringes 
differ from cosinusoidal fringes obtained in conventional double-exposure hologram 
interferometry, see Fig. 4.1. One of these differences is that the zero-order J0 fringe is much 
brighter than the higher order J0 fringes, while all cosinusoidal fringes, regardless of their order, 
show equal brightness, Fig. 7.3. Furthermore, the zero-order fringes represent the stationary 
points on the vibrating object and thus allow easy identification of nodes. The brightness of the 
higher order J0 fringes decreases with increasing fringe order and can be directly related to the 
mode shapes. 

Application of the foregoing analysis, to quantitative interpretation of transverse vibrations 
of a cantilever beam, is discussed in Sections 7.3 to 7.5. 

7.3. Quantitative interpretation of time-average holograms of a cantilever beam 

Following is a representative example of a cantilever beam that was fixed at the lower end 
while its upper end was free. The cosinusoidal excitation was applied at the free end, by means 
of a loud speaker. The excitation was always set in such a way that the motion of the beam was 
in the direction parallel to the z-axis, Fig. 7.1. For this case, Eq. 7.1 can be written as 
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(a) 
ti,nii;.iw«.. 

ZOF 

(b) 

ZOF 

ZOF 

-ZOF 

Fig. 7.3. Fringes obtained during reconstruction of: (a) conventional 
double-exposure hologram, showing cosinusoidal intensity 
variation (note, the zero-order-fringe (ZOF) is as bright as 

other fringes), (b) continuous time-average holograms, 
showing Jl intensity variation (note that the ZOF's 

are much brighter than the higher order fringes). 
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Lf(0,0,z,?) = Lr(0,0,z)cos(cof)   , (7.12) 

while Eq. 7.10 yields 

\€lt\=HK^-Klz)Ltl   , (7.13) 

where k is given by Eq. 2.6, K\z and Kiz can be computed from Eqs 2.4 and 2.5 as 

K^ = -f 1 ^ ^   . (7-14) 
[ixp-xxY + (yp-yx) + {zP-ziY\ 

and 

** = ? ^ ^ F^   ' (7-15) 
\ix2-xpY + {y2-yp) +(z2-zp)zj 

respectively, and Lt. is the vibration amplitude. 

The goal of the analysis is to determine Ltz which gives the mode shape. However, before 
this can be done, Eqs 7.14 and 7.15 have to be evaluated, at every point of interest on the 
vibrating object. 

For the case of retro-reflective illumination and observation, parallel to the z-axis, the 
quantity (K2z — K\z) has the maximum value of 2, as determined from Eqs 7.14 and 7.15. Thus, 
combination of Eqs 2.6 and 7.13, yields 

Lt. = -^\Clt\    . (7.16) 
47C 

The values of Lt., for various orders of the J0 fringes and A, = 0.6328 |im, as computed from Eq. 
7.16, are shown in Table 7.1. 

For any other geometry, where the directions of illumination and observation are not 
parallel to the z-axis, the quantity {Kjz - K\z) will always be less than 2. Its actual magnitude 
will depend on the magnitudes of angles yi and 72 that the directions of Ki and K2, 
respectively, make with the direction of L, as shown in Fig. 7.4. That is, for every case when 
directions of illumination and observation deviate from being parallel to the direction of motion, 
the Ltz computed from Eq. 7.13 will always be greater than that given by Eq. 7.16, for the same 
order of the J0 fringe. The percentage error, PE, between the value of Lh, for the non 
retro-reflective case, and the value of L,   , for the retro-reflective case, can be defined as 

PE-- 
(Lt    Ltzrr jxl0Q% (717) 
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Table 7.1. Zeros of J0 and values of the corresponding Lhrr. (The values 
of Lhrr were determined for the case of retroreflective illumination 

and observation and for X = 0.6328 |im.) 

n Ifirl '-'tzrr 

(um) 

1 2.40438 0.121 

2 5.52008 0.278 
3 8.65373 0.438 
4 11.79153 0.594 
5 14.93092 0.752 

6 18.07106 0.910 
7 21.21264 1.068 
8 24.35247 1.226 
9 27.49348 1.385 
10 30.63461 1.543 

11 33.77582 1.701 
12 36.91710 1.859 
13 40.05843 2.017 
14 43.19979 2.175 

15 46.34119 2.334 

16 49.48261 2.492 
17 52.62405 2.650 
18 55.76551 2.808 
19 58.90698 2.966 
20 62.04847 3.125 

21 65.18996 3.283 
22 68.33147 3.441 

23 71.47298 3.599 
24 71.61450 3.757 

25 77.75603 3.916 

26 80.89756 4.074 

27 84.03909 4.232 
28 87.18063 4.390 
29 90.32217 4.548 

30 93.46372 4.707 
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(deg) 

Fig. 7.4. Values of (K2z - K\z) as a function of yi and y2. 

Equation 7.17 was evaluated for various values of (K2z -K\z) and the results are shown in 
Fig. 7.5. This figure indicates that Eq. 7.16 will yield Lz to within 5% of the value actually 
experienced by the object as long as (K2z-K\z) > 1.9. This result, in turn, allows to determine, 
from Fig. 7.4, that when |y2| = 0°, |yi | should be less than or equal to 26°, while for |y2| = 15°, 
|YI | < 21°. By reciprocity, the following pairs of angles will be true: |yi | = 0°, |y21 < 26° and 
|YI I = 15°, |y2| < 26°. Figure 7.4 also indicates that experimental setups with j-yi I > 26° (or, by 
reciprocity, with |y2| > 26°) will always yield (K2z -Kiz) < 1.9, which will result in errors (as 
defined by Eq. 7.17) in excess of 5%. 

One way to compensate for the errors resulting from the setup geometry is to use the 
following formula 

Lt = l+fg]^, (7.18) 

where Ltzrr is the displacement corresponding to the order of the J„ fringe crossing the point of 
interest on the particular object, as given in Table 7.1, while PE is determined from Figs 7.4 and 
7.5. Therefore, Lu obtained from Eq. 7.18 is the displacement at a given point on the object, 
compensated for geometry of the system used to record and reconstruct the hologram. 

Another way to achieve the same result is to use Eqs 7.13 to 7.15 directly, as discussed in 
Section 7.5. 
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Fig. 7.5. Percentage error in Ltz, with respect to Lhrr, as a function of (K2z - £jz). 

7.4. Experimental setup 

The cantilever beam used in this example was rigidly fixed at the bottom and free at the 
top. Its free length was 160 mm (6.3 in), it was 28.58 mm (1.125 in) wide and 3.18 mm (0.125 
in) thick. The cantilever beam, made of 6061-T6 aluminum, was excited acoustically at its free 
end. The origin of the right-handed rectangular Cartesian coordinate system was located at the 
fixed end of the cantilever beam with the positive z-axis pointing toward the hologram. In this 
coordinate system, the position vectors Ri and R2 defining point source of illumination and 
point of observation, respectively, were determined to be 

and 

Ri= 216f+ 23/+ 1321* 

R2 =-131 + 38/+ 806* 

(7.19) 

(7.20) 

where coefficients are distances in millimeters. The experimental setup, shown schematically in 
Fig. 7.1, was used to record time-average holograms of the vibrating cantilever beam. These 
holograms were analyzed and the results are discussed in Section 7.5. 
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7.5. Experimental results 

The excitation frequency was varied until the cantilever beam resonance was achieved. 
These experimentally obtained resonance frequencies compared very well with the frequencies 
computed using the beam theory, Fig. 7.6. 

12 

IÖ 

2     6 

UJ 
r> 
o 
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o TIME-AVERAGE   HOLOGRAMS 

BEAM  THEORY 

3 4 5 
MODE   NUMBER 

Fig. 7.6. Resonance frequency of a vibrating cantilever beam as a function 
of mode number: comparison between the experimental results obtained 

from the time-average holograms and those based on the beam theory. 

Representative time-average holograms were recorded at the first three resonance 
frequencies with the corresponding results shown in Figs 7.7 to 7.9, respectively. For example, 
for the first flexure mode, Fig. 7.7, the center of the fifth dark fringe was located 67 mm above 
the fixed end. That is, for this point on the object, 

and 

Rp = 67/   , 

Substitution of Eqs 7.19 to 7.21 into Eqs 7.14 and 7.15 yielded 

Ku = -0.9864 

K2z = 0.9992   , 

(7.21) 

(7.22) 

(7.23) 

7-12 



respectively. 

Subsequent substitution of Eqs 2.6, 7.22, and 7.23 into Eq. 7.13, together with the values of 
A, = 0.6328 urn (wavelength of the He-Ne laser used to record and reconstruct the time-average 
holograms, in this study) and \Qt\ = 14.93092 (corresponding to the fifth J0 fringe, Table 7.1) 
gave the following result: 

U ,= 
X 

2%(K2z-Ku) 
|Q,|= 0.757 urn (7.24) 

160 - 

O        TIME-AVERAGE HOLOGRAMS 

    BEAM THEORY 

n=l9 
Rp = 157 7 

n= 10 
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n=5 
RP=67T 

fe = 99 cps 

f.  = 101 cps 

0.5 1.0 1.5 2.0 

MODE   SHAPE,   pm 
2.5 3.0 

Fig. 7.7. Shape of the first flexure mode of a vibrating cantilever beam: 
comparison between the experimental results obtained from 

the time-average hologram and those based on the beam theory. 

Equation 7.24 indicates that the Lt, corrected for setup geometry is only 0.7% greater than 
that for the retro-reflective illumination and observation case. For the center of the 10th dark 
fringe, located 102 mm above the fixed end of the cantilever beam, we obtain Lh = 1.557 |im 
which is 0.9% greater than the value given in Table 7.1. Finally, the center of the 19th dark 
fringe, at 157 mm, corresponds to the displacement of 3.010 um which is 1.5% larger than the 
displacement for the retro-reflective illumination and observation for n=19, as given in Table 7.1. 

In a similar manner, displacements at other points on the cantilever beam were determined, 
Fig. 7.7. For comparison, the mode shape of the cantilever beam vibrating at its first flexure 
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frequency was determined analytically using the beam theory. The agreement between the 
theory and experiments is very good. 

Following the procedure described above, mode shapes for the second and the third flexure 
frequencies were determined, Figs 7.8 and 7.9, respectively. Again, the agreement between the 
theoretical and the experimental results, obtained from the time-average holograms, is very good. 

Q) TIME-AVERAGE   HOLOGRAMS 

BEAM   THEORY 

fe  = 619 cps 

f,   =  633 cps 

-1.0 -0.5 0 0.5 

MODE   SHAPE,   pm 
1.0 1.5 

Fig. 7.8. Shape of the second flexure mode of a vibrating cantilever beam: 
comparison between the experimental results obtained from 

the time-average hologram and those based on the beam theory. 

7.6. Conclusions 

The results presented in this chapter indicate that images obtained during reconstruction of 
the time-average holograms are modulated by a system of fringes described by the square of the 
zero-order Bessel function of the first kind. These images can be readily interpreted to obtain 
quantitative information on resonance frequencies and corresponding mode shapes of vibrating 
objects. The representative examples show very good agreement between the experimental 
results obtained from time-average holograms and the analytical results based on the beam 
theory. It should be remembered, that these results were determined for a cantilever beam of 
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constant cross section for which an exact solution of the differential equation can be obtained. 
However, for beams of varying cross section, as well as for objects of complex geometry or with 
complicated boundary conditions, exact analytical solutions may be unobtainable. The 
experimental procedures of time-average holography, on the other hand, are independent of 
object geometry or its boundary conditions. As such, once a hologram of a vibrating object has 
been recorded, it can be interpreted to obtain quantitative results following the procedure 
described in this chapter. Furthermore, the experimental results obtained from time-average 
holograms can be used to define boundary conditions needed to "run" the analytical or 
computational methods, e. g., finite element computer codes. This combination of the 
time-average holography (or other optical methods) with the finite element method will lead to 
the development, of new design methodologies. Such hybrid methodologies, possessing both 
experimental and analytical capabilities, will be the next generation of tools that engineers will 
use to create new designs for the future (see, e. g., Chapter 10). 

Q   TIME-AVERAGE HOLOGRAMS 

BEAM THEORY 

■ M 

1733 cps 

1772 cps 

-0.5 0 0.5 

MODE   SHAPE,   pm 

Fig. 7.9. Shape of the third flexure mode of a vibrating cantilever beam: 
comparison between the experimental results obtained from 

the time-average hologram and those based on the beam theory. 
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8. ELECTRO-OPTIC HOLOGRAPHY 

Recent advances in the phase step hologram interferometry, speckle metrology, and 
computer technology allowed development of a system for direct electronic recording of 
holograms and transmission of holographic interferograms by television systems for real-time 
display of interference fringes1"16. This Electro-Optic Holography (EOH) system, in addition to 
other electronic and optical components, consists of a modified speckle interferometer, which 
produces speckles large enough to be resolved by the TV camera. The output of the TV camera 
is fed to a system that computes and stores the magnitude and phase, relative to the reference 
beam, of each picture element in the image of the illuminated object. 

Any of the usual phenomena that generate characteristic fringes in hologram 
interferometry will do so in this process also, and the characteristic fringe functions will be 
impressed on the magnitudes of the values stored. 

8.1. Fundamentals of EOH 

Measurements of displacements of objects undergoing static and dynamic loads have 
been solved in a number of ways, as discussed in Chapters 4 to 7. Recently, this problem has 
been addressed using advances in phase step hologram interferometry, speckle metrology, and 
computer technology. One of these ways is based on the method of Electro-Optic Holography 
(EOH) and is the subject of this chapter. 

Today, the displacement/deformation analysis of objects undergoing either static or 
dynamic loads are, to a great extent, satisfied by application of the finite element method 
(FEM)10. In these applications, the FEM is used to solve problems for which exact solutions do 
not exist, or are very difficult to obtain. Also, the FEM provides the only means to analyze 
complex three-dimensional structures, for which the response to the applied loads cannot be 
predicted by any other computational method. However, results obtained by the FEM depend on 
boundary conditions, rely greatly on the accurate knowledge of material properties, depend on 
accurate representation of the geometry of the structure, and are sensitive to the shape and the 
size of elements employed in modeling of the structure. All the information necessary to run the 
finite element models can be obtained, directly or indirectly, from experimental studies. 

Currently, there are a number of experimental methods used to study 
displacements/deformations of objects.   These methods are primarily based on the use of 
mechanical probes, strain gauges, and accelerometers and, in general, are invasive because they 
may affect the object's response to the load. In 1965, however, the method of hologram 
interferometry was invented11 and provided means for noninvasive measurement of the 
displacements/deformations of the objects. Although this method provided means by which 
holograms of objects could readily be recorded, quantitative interpretation of interference fringes 
has traditionally been tedious and prone to considerable inaccuracy. This has led to the use of 
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heterodyne and phase step methods to read out the interferometric fringes produced during 
reconstruction of holograms of vibrating objects. Although these methods12"15 allowed high 
accuracy, 1/1000 and 1/100 of one fringe, respectively, in measurements of local phase 
differences, they still require physical recording of a permanent hologram in some type of 
photosensitive medium, which needs lengthy processing. Therefore, the methods requiring 
lengthy processing do not qualify for fully automated holographic analysis. Recently, an 
automated method for processing of vibration fringes has been developed6. In this method, 
measurements of irradiances produced by mutual interference of the object and a reference fields 
are made electronically by a detector array. Processing of this interferometric information and 
display of the computational results are carried out concomitantly with measurements of 
irradiation. Because this method does not depend on recording of holograms in conventional 
media, but rather relies on electronic acquisition, processing, and display of optical interference 
information, it is called Electro-Optic Holography (EOH), also referred to as Electronic 
Holography, or TV Holography9. In the following sections, application of EOH to static and 
dynamic measurements is described; more detailed description of selected applications are 
described in the subsequent chapters 

The EOH method allows automated processing of fringes of statically and dynamically 
loaded objects5'8. In this method, measurements of irradiances produced by mutual interference 
of the object and the reference fields are made electronically by a CCD camera, Fig. 8.1. 
Processing of this interferometric information and display of the computational results are carried 
out concomitantly with measurements of irradiation. The EOH method does not depend on 
recording of holograms in conventional media, but rather relies on electronic acquisition, 
processing, and display of optical interference information. 

In the following sections, principles of EOH are outlined and its implementation to static 
and dynamic measurements is presented. 

8.2. Electronic processing of holograms 

The EOH system is capable of performing either static or dynamic measurements. In the 
discussion which follows, static measurements are implemented using the double-exposure 
hologram interferometry method, while dynamic measurements are implemented by the 
time-average method. 

8.2.1. Static measurements 

Static measurements are characterized by recording "single-exposure" holograms of an 
object at two different states of stress. As a result of interference between a set of two 
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"single-exposure" holograms, fringes form, if there are any optical path differences between the 
corresponding points on the object as recorded in the two holograms. 

ÜLPS2 

PS1 

I LASER 

~M1 

Fig. 8.1. Optical configuration of the EOH system: BS is the 
beamsplitter, Ml and M2 are the mirrors, PS1 and PS2 are the 

phase steppers, SEI and SE2 are the spatial filter beam expander 
assemblies, BR is the object beam rotator, and SI is the 

speckle interferometer. 

In EOH, this process is carried out by recording sequential frames of images of the object 
corresponding to the two states of stress. Typically, four sequential frames are recorded, with a 
finite phase step - imposed on the reference beam - between each frame, for every 
single-exposure image of the object. In the following discussion, in order to simplify derivation 
of equations describing the EOH process for static measurements, the object will be initially 
unstressed; results would be the same if the object was stressed initially but mathematics would 
be much more complicated. 
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The image of an unstressed (i. e., unloaded) object can be described by the irradiance 
distribution for the n-th sequential frame, In{x,y), at the detector array of a CCD camera in the 
EOH system setup, as 

I„(x,y) = I0(x,y) +Ir(x,y)+2A0(x,y)Ar(x,y)cos[A<p(x, y) + A0„]   , (8.1) 

while the corresponding image of the stressed (i. e., loaded) object can be described by the 
irradiance distribution, I„(x,y), as 

I'n{x,y) = I'0(x,y) + Ir(x,y) + 2A'0(x,y)Ar(x,y)cos[A(p(x, y) + Q(x,y) + A9„]   . (8.2) 

In Eqs 8.1 and 8.2, x andy identify coordinates of the detectors in the array, I0 and Ir, are 
the irradiances of the object and the reference beams and are squares of the amplitudes 
A0 and Ar, respectively, Acp is the phase difference between the object and the reference fields, 
A0„ is the finite phase step imposed on the reference beam between sequential frames recording 
individual images, and Q is the fringe-locus function, constant values of which define fringe loci 
on the surface of the object. 

Since I and / are measured at known coordinates x and>>, Eqs 8.1 and 8.2 contain four 
unknowns, that is, irradiances (which are squares of the amplitudes) of the two fields, the phase 
differences between these fields, and the fringe-locus function. The goal of the analysis is to 
determine Q because it relates directly to displacements and deformations of the object. 

In EOH, A(p is eliminated by recording sequentially four TV frames with an introduction 
of a 90° phase step between each frame. That is, A6„, appearing in Eqs 8.1 and 8.2, takes on the 
values of 0°, 90°, 180°, and 270°. This process can be represented by two sets of four 
simultaneous equations corresponding to Eqs 8.1 and 8.2, respectively, that is, 

7i=/o+/r + 2^o^rcos(A(p + 0°)   , (8.3) 

I2=Io+Ir + 2AoArcos(A<p + 90°)   , (8.4) 

73=/o + /, + 2^o^rcos(A(p+180°)   , (8.5) 

74 = /0+/r + 2^D^,cos(A(p + 2700)   , (8.6) 

and 

/1=^+/r + 2^,cos(A9 + Q + 0°)   , (8.7) 

f2=lf
o + Ir + 2A'oArCOs(A<p + £l + 90o)   , (8.8) 

4=#+/r + 24UrCos(A<p + Q+180°)   , (8.9) 

4=^+/r + 2^UrCOs(Acp + a + 270o)   , (8.10) 
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where the arguments (x,y) were omitted for simplification. Evaluation of Eqs 8.3 to 8.10 yields 

Ix =I0 + Ir + 2A0ArcosAy   , (8-11) 

I2=I0 + Ir + 2A0ArsmA(p   , (8.12) 

h = I0 + Ir-2A0ArcosAy   , (8.13) 

l4=I0 + Ir-2A0Ars'mAq   , (8.14) 

and 

I/
l=I/

0 + Ir + 2A/
0Arcos(A<p + Q)   , (8.15) 

I,
2=I/

0+Ir + 2A/
0Arsm(Ay + Q.)   , (8.16) 

If
3=If

0+Ir-2A/
0ArCos(&y + a)   , (8.17) 

l'4=I,
0+Ir-2A/

0Arsm(A(? + £l)   . (8.18) 

It should be noted that systems of equations similar to Eqs 8.11 to 8.14 and Eqs 8.15 to 8.18 
could be obtained using any value of the phase step, however, use of the 90° phase step results in 
the simplest computations. 

Subtracting Eqs 8.11 and 8.13 as well as Eqs 8.12 and 8.14 we obtain, for the unstressed 
object, the following set of two equations: 

(7i-/3) = 4M/-cosAq> , (8.19) 
and 

(72-/4) = 4^0^rsinA(p   . (8.20) 

Following the above procedure and subtracting Eqs 8.15 and 8.17 and Eqs 8.16 and 8.18, a set of 
two equations is obtained for the stressed object, that is, 

(I/
l-I/

3) = 4A'0Arcos(A<p + Q.) , (8.21) 

and 

(I,
2-l'4) = 4Af

0Arsm(Ay + Q) . (8.22) 

Addition of Eqs 8.19 and 8.21 yields 

(/i -13) + (l[ - f3) = 4A0Arcos A<p + 4^,cos(Acp + O)   . (8.23) 
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Because object displacements and deformations are small, it can be assumed that A'0 ~ A0. 
Therefore, Eq. 8.23 becomes 

(/, -h) + {l\ -l'3) = 4^r[cosAcp + cos(A(p + Q)]   . (8.24) 

Recognizing that cos(A(p + Q) = cos Acp cos Q. - sin Acp sin Q, Eq. 8.24 can be rewritten as 

Dx={h-h) + {l\-l'2) 

= AA0Ar[{\ +cosQ)cosA(p-sinA{psinß]   . (8.25) 

In a similar way, addition of Eqs 8.20 and 8.22 simplifies to 

02 = (/2-/4) + (/2-/4) 

= 4yMr[(l+cosQ)sinA(p + cosA(psinQ]   • (8.26) 

Finally, addition of the squares of Eqs 8.25 and 8.26 yields 

Dl +D\ = {4^0^r[(l +cosQ)cosA9-sinA(psinQ]}2 

+ {4^0^r[(l+cosO)sinA(p + cosAcpsinQ]}2   , 

which reduces to 

D2+Z)2 = 16^2^2[(l+cosn)2+sin2n]   , 

wherefrom 

D\+DI = 32A2
0A

z
r(\+cosQ)   . (8.27) 

Furthermore, recognizing that (1 + cos Q) = 2 cos2(D/2), Eq. 8.27 can be reduced to 

JDJ+Dl =8A0Arcos^   , (8.28) 

which represents the static viewing image displayed by the EOH. In Eq. 10.28, Q, is the 
fringe-locus function corresponding to the static displacements and/or deformations of the object. 
The fringe-locus function can be determined by processing the sequential EOH images as 
described below. 

In order to obtain data from the EOH images, we will again employ Eqs 8.19 to 8.22 and 
follow the procedure used to derive Eq. 8.27. The result of this procedure is 
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£>3=(/l-/3)-(/l-/3) 

= 4^0^r[(l-cosQ)cosA(p + sinA(psin£2]   , (8.29) 

D4 = (/2-/4)-(/2-4) 

= 4^0^r[(l-cosß)sinA(p-cosA(psinQ]   , (8.30) 

and 

D2
3+D2

A = 32A2A2(I-cosO)   . (8.31) 

Subtracting Eq. 8.31 from Eq. 8.27 we obtain 

D = (D2
l+D2

3)-(D2
l+D2

4) = 32A2A2(\+cosQ)-32A2A2(l-cosQ.)   , 
or 

D = 64A2
0A

2cos£l   . (8.32) 

Starting with Eqs 8.19 to 8.22, we can also determine 

iVi=(/i-/3) + (/2-/4) 

= 440A[(l+sinQ)cosA(p + sinAq>cosQ]   , (8.33) 

N2 = (I2-U)-(I/i-I/3) 

= 4^0^r[(l+sinQ)sinA(p-cosA(pcosQ]   , (8.34) 

tf3 = (/i-/3)-(/2-4) 

= AA0Ar[{l -sinQ)cosA(p-sinA(pcosQ]   , (8.35) 

N4 = (I2-U) + (l'l-I/
3) 

= 4^0^r[(l-sinn)sinA(p + cosA(pcosQ] ,                                                   (8.36) 

N2
l+N2

2=32A2
0A

2(l + smQ)   , (8.37) 

Nl+Nl=32A2
0A

2(l-sinQ)   , (8.38) 

and 

N=(N2+N2
2)-(N

2
3+Nl) = 64A2A2.sm£l   . (8.39) 
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Finally, dividing Eq. 8.39 by Eq. 8.32, we obtain 

N _ 64ApA^sinQ 
D~ 64A2

0A
2

rcosQ   ' 

from which it follows that 

Q = tair1Q0    . (8.40) 

It should be noted that Q, computed from Eq. 8.40, is a spatial function that depends on 
coordinates x and v. Therefore, its values are determined for every coordinate pair (x,y) in the 
object space. Once the values of Q. are determined, they can be used to compute object 
displacements using procedures discussed in Chapter 4. 

8.2.2. Dynamic measurements 

In this section, application of EOH to dynamic measurements is made based on 
time-average hologram interferometry (Chapter 7). To facilitate this presentation, time-average 
recording of a sinusoidally vibrating object will be considered. For this case, the irradiance 
distribution for the n-th sequential frame, /,„, can be represented by a relationship similar to those 
shown in Eqs 8.1 and 8.2, that is, 

4 =I0+Ir + 2A0Arcos(A(pt + ABn)M(Qt)   . (8.41) 

In Eq. 8.41, the arguments (x, v) were omitted for simplification, subscript t indicates time 
varying parameters, Mis the characteristic function (see Chapter 7) which modulates the 
interference of the two fields due to the motion of the object, Qt is the fringe-locus function 
defining fringe loci on the surface of a vibrating object, and other parameters are as defined for 
Eqs 8.1 and 8.2. 

Equation 8.41, like Eqs 8.1 and 8.2, has four unknowns: I0 and Ir, which are squares of 
A0 and Ar, respectively, Acp,, and Q.t- The goal of the analysis is to determine Q.t because it 
relates directly to the displacements of the vibrating object. 

In order to determine Q.t from the electronic holograms of a vibrating object, four 
sequential frames are recorded with the phase steps equal to multiples of 90° imposed on the 
reference beam between each frame, see also Section 8.2.1. This process can be represented by 
the following set of four simultaneous equations: 
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/(i=/o+/, + 2^o^cos(A(p, + 0°)M(a)   , (8.42) 

It2=Io+Ir + 2AoArCos(Ayt + 90B)M(Clt)   , (8.43) 

4=/o+/r + 2^rcos(A(p, + 180o)M(n,)   , (8.44) 

It4=Io+Ir + 2AoArcos(Aq)t + 270o)M(Qt)   , (8.45) 

Following the procedure used to derive Eqs 8.19 and 8.20 and operating on Eqs 8.42 to 
8.45, we obtain 

Il]=I0+Ir + 2A0Arcos(A%)M(Qt)   , (8.46) 

It2=I0+Ir + 2A0Arsm.(A<s?t)M(eit)   , (8.47) 

Ih=I0+Ir-2A0Arcos(A<Vt)M(Q.t)   , (8.48) 

Iu=I0+Ir-2A0Arsin(A(?t)M(Qt)   , (8.49) 

Then, from Eqs 8.46 to 8.49, it follows that 

(It]-Ih) = 4A0Arcos(A<?t)M(Qt)   , (8.50) 
and 

{It2-ItA) = 4A0Arsin(A%)M(Qt)   , (8.51) 

If the viewing mode is selected, then, based on the input described by Eqs 8.50 and 8.51, 
the EOH system produces an image which can be represented by 

J(Itl-Ih)
2 + (Ih-Iu)2 =4A0ArM(Clt)   . (8.52) 

The image represented by Eq. 8.52 is displayed live on a TV monitor and it can be stored in a 
processor memory. 

This storage can be of two types. If the image is to be recalled in the future for visual 
observation, then an 8-bit image is stored and occupies approximately one-quarter megabyte of 
memory - this is image storage. If the image is to be processed quantitatively, then the lookup 
table for the data mode is loaded into the operating system and produces a data image which can 
be represented by 

(7,1-4)2 + (//2-4)2 = \6I0IrtiP(Q.,)   . (8.53) 

The result of Eq. 8.53 is stored as the 16-bit data image and occupies one-half megabyte of 
memory - this is data storage. Either type of image may then be down-loaded to the memory of 
the host computer for further processing. 
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Equations 8.52 and 8.53 indicate that the viewing and the data images are proportional to 
the characteristic function and to the square of the characteristic function, respectively. The 
characteristic function is determined by the temporal motion of the object, and for sinusoidal 
vibrations, assuming that the vibration period is much shorter than the TV framing time, 

M[Qt(x,y)]=J0[\Qt(x,y)\]   , (8.54) 

where J0 is the zero-order Bessel function of the first kind, as discussed in Chapter 7. Therefore, 
Eqs 8.52 and 8.57 become 

and 

J(It]-Ihf + (It2-Iu)2 = 4A0Ar\J0(\£lt\)\   , (8.55) 

{Ih-Ih)
2 + {Itl-Iu)2 = \6I0IJl{\at\)   , (8.56) 

respectively. Equation 8.55 results in a viewed image that is modulated by a system of fringes 
described by the zero-order Bessel function of the first kind, while Eq. 8.56 shows that the data 
image is modulated by the square of this function. Thus, centers of the dark fringes are located at 
those points on the surface of the object where J0(\Q.t\) equals zero, as shown in Fig. 7.2. This 
figure indicates that the zero-order fringe is much brighter than the other J0 fringes. Since the 
zero-order fringes represent the stationary points on the vibrating object they allow easy 
identification of nodes. The brightness of other fringes decreases with increasing fringe order and 
can be directly related to the mode shapes. It should be noted that higher order zeros are nearly 
equally spaced giving the J0 function an almost periodic nature which is the characteristic that is 
utilized in quantitative interpretation of images recorded by the EOH system as discussed in 
Section 8.2.2.1. 

In the EOH system, the data provided by the CCD camera are processed to produce 
results shown by Eq. 8.55 for every pixel in the image frame at the rate of 30 frames per second. 
Each frame contains 512x480 8-bit numbers so that each image consists of 245,760 points. For 
visual examination of the vibration modes, time-average hologram images corresponding to Eq. 
8.55 are displayed on the TV monitor. These images are generated concomitantly by the pipeline 
processor of the EOH system. To produce data suitable for quantitative analysis of time-average 
holograms, 16-bit images represented by Eq. 8.56 are stored. These data are stored in two 8-bit 
bytes per pixel and produce a frozen image which can be displayed on the TV monitor one byte 
at a time, that is, either as a high-byte image or a low-byte image. 
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8.2.2.1. Determination of the fringe-locus function for the vibrating object 

To interpret electronically recorded time-average holograms quantitatively, the argument 
of the fl0 function, appearing in Eq. 8.56, must be determined. One method to determine this 
argument, suitable for the time-average images recorded by EOH, was developed by Stetson and 
Brohinsky6. This method uses the fact that it is possible to shift J0 fringes in a manner similar to 
that in which phase modulation shifts cosinusoidal fringes in conventional double-exposure 
hologram interferometry. In time-average holography, this is done by modulating the phase of 
either the object or the reference beams sinusoidally at the same frequency and phase as the 
object vibration. Such a process can be represented mathematically by addition of a phasor bias, 
B, to the argument of the Bessel function, resulting in the characteristic function 

M[at(x,y),B)=J0[\Qt(x,y)-B\]   . (8.57) 

For purposes of analysis, the object must be made to vibrate in only one vibration mode at 
a time so that the motions of its various parts are either in or out of phase with one another. If 
the phase of the sinusoidal beam modulation is adjusted to coincide with that of the object 
vibration, the phasor bias becomes a simple additive term within the argument of the Bessel 
function, that is, 

Mmt(x,y),B]=Jo[\nt(x,y)-B\]   . (8.58) 

Therefore, Eq. 8.56 becomes 

[/„ (x, v) -It3(x, v)]2 + {It2(x,y)-Iu(x,y)Y = 

= \6I0(x,y)Ir(x,y)J2
0[\Qt(x,y)-B\]   . (8.59) 

For comparison, a general equation representing the irradiance, h,, of an image 
reconstructed from a time-average hologram is 

hl(x,y) = Ial(x,y) + Imt(x,y)J2o[\Clt(x,y)-B\]   , (8.60) 

where Ia, represents local average background irradiance from scattered light and Imi is the local 
maximum irradiance. Therefore, Eq. 8.59 is the special case of Eq. 8.60 with 

Ih,(x,y) = [/,, (x,y)-Ih(x,y)]2 + [It2(x,y)-Iu(x,y)]2 ,                                        (8.61) 

la,(x,y) = 0   , (8-62) 

and 

Imi(x,y) = l6I0(x,y)Ir(x,y)   . (8.63) 

8-11 



The output of the processor in the data mode, h,, is stored in the host computer for 
different values of B, while Ia„ Imn and Q.t constitute three unknowns, and the goal of the 
analysis is to determine Qt- Unfortunately, the Bessel function is not separable in terms of Q.t 

and B, so a straightforward solution is not possible. However, the nearly periodic nature of the 
J0 function (see discussion following Eq. 8.56) allows an approximate solution for the 
fringe-locus function. This approximate solution recognizes that Eq. 8.60 is similar to the 
general equation for the irradiance distribution, h, for an image reconstructed from a 
conventional double-exposure hologram with cosinusoidal fringes, that is, 

h(x,y) = Ia(x,y) + Im(x,y)cos2[Q.(x,y)-B]   , 

where fl0 in Eq. 8.60 has been replaced by cos2 and Q.t has been replaced by £1. 

(8.64) 

Examination of Eq, 8.64 shows that it, just like Eq. 8.60, also has three unknowns: 
Ia, Im, and Q.. However, the cos2[Q(x,y)-B] term, appearing in Eq. 8.64, unlike the 
fl0[\Q.t{x,y) -B\] term of Eq. 8.60, is separable in its component arguments. To facilitate 
solution for Q., Eq. 8.64 is rewritten as 

Ih(x,y) = I'a{x,y) + I'm(x,y)cos[2Q(x,y) - 2B]   , (8.65) 

where 

I'a{x,y) = Ia(x,y) + 
Im{x,y) (8.66) 

and 

l'm(x,y) 
Im(x,y) 

(8.67) 

With three values of B, three simultaneous equations of the type of Eq. 8.65, can be 
solved uniquely for a given value of the Q. The three simultaneous equations are 

Ihx (x,y) = I'a{x,y) + I'm{x, v)cos[2Q(x, v)]    , 

Ik2(x,y) = I'a(x,y) + 4(x, v)cos[2Q(x, v) - 2B] 

Ihi (x, v) = I'a{x,y) + l'm(x,y)cos[2Q(x,y) + 2B] 

(8.68) 

(8.69) 

(8.70) 

corresponding to the zero-, positive-, and negative-shifts, respectively. Solution of Eqs 8.68 to 
8.70 yields 

^(^) = ^tan-1 l-cos(2ff) 
sin(25) 

x 
h3(x,y)-h2(x,y) 

21 h, (x, y)-h2 (x, y)-h, (x, y) 
(8.71) 
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If the three irradiance distributions//,, (x,y), h, (x,y), and If,, (x,y), corresponding to 

three time-average holograms, are substituted into Eq. 8.71 the result is Q.lapprox(x,y). This value 
ofQ-tapprox differs from the correct argument, Q.t, of the J0 function, because of inequality between 
the J2 and cos2 functions, and should be expressed as 

Qtapprox(x,y) = Qt(x,y) + E(x,y)    . (8.72) 

Equation 8.71 yields values of Qtapprm modulo 180°. By adding or subtracting 180°, 
depending on the sign of the numerator in Eq. 8.71, whenever the denominator is negative, 
Qtapprox can be obtained modulo 360°. The image can be searched by the computer to locate 
discontinuities to define areas where the missing multiples of the 360° should be added to unwrap 
function Qtapprox- By further identifying pixels within the zero-order fringe, an overall level shift 
can be applied to make those pixels have values between ±180°. 

Errors £ can be computed for any value of Q.t for specific values of B to create a lookup 
table. This lookup table is used to correct the values computed from Eq. 8.71 which have been 
unwrapped and level shifted. In this way, vibratory deformations can be obtained from 
time-average hologram reconstructions with little more mathematical computation than is 
required for static deformations. Once the correct values of Q.c are determined, they can be used 
in any one of the equations for quantitative interpretation of time-average holograms, as 
discussed in Chapter 7. 

8.2.2.2. Generation of a lookup table 

The lookup table is computed from Eqs 8.60 and 8.71. First, three values of h, 
are computed by using Eq. 8.60 for three values of B, for example, 0 and ±7u/3, that is, 

Ih,i(x,y)=Ia,(x,y) + ImXx,y)J2
0[\Qt(x,y)\]   , (8.73) 

Ihl2(x,y)=Iai(x,y)+Im,(x,y)J2
0[\Clt(x,y)-B\]   , (8.74) 

Ihh(x,y)=Iai(x,y)+Imi(x,y)J2
0[\nt(x,y) + B\]   . (8.75) 

Substitution of the values of Eqs 8.73 to 8.75 into Eq. 8.71 yields 

ß^TO,(x,^) = 2tan ' 
l-cos(2ff) 

sin(25) 

x J2
0[\nt(x,y) + B\]-J2

0[\Qt(x,y)-B\] } 

2Jl[\Qt(x,y)\]-J2
0[\nt(x,y)-B\]-J2

0[\£lt(x,y)+B\]l 
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To construct a lookup table corresponding to the specific value of B, Eq. 8.76 is used to 
compute Q-tapprox f°r the designated range of values of Q.t- Tabulating Q, versus Q.tappro:c produces 
the lookup table for the given value of the bias vibration. If the magnitude of phase modulation 
of the bias vibration changes, new lookup table must be constructed and used in quantitative 
interpretation of the corresponding holograms. 

8.3. EOH system and procedure 

In this section, physical description of the EOH system is given and its operation is 
presented. 

8.3.1. Description of the system 

Schematic representation of the optical and electronic configurations of the EOH system 
are shown in Figs 8.1 and 8.2, respectively. Laboratory implementation of these configurations 
is shown in Figs 8.3 to 8.10. 

SPECKLE 
INTERFEROMETER 

CCD 
CAMERA 

PROCESSOR 

PHASE 
STEPPER 

CONTROLS 

OBJECT 
LOADING 

CONTROLS 
HOST 

COMPUTER 

TV 
MONITOR 

COMPUTER 
MONITOR 

Fig. 8.2. Electronic configuration of the EOH system. 
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In the EOH system with three cameras, developed during this project, the laser output is 
divided into four beams, Figs 8.6 to 8.9, by means of continuously variable beamsplitters. One 
of these beams is directed via a piezoelectrically driven mirror and is shaped by the spatial filter 
beam expander assembly to illuminate the object uniformly, Fig. 8.1; this mirror can be driven at 
the same frequency as the object excitation to provide bias vibration. The other three beams, also 
spatially filtered and expanded, are directed toward the reference inputs of the speckle 
interferometers by three other piezoelectrically driven mirrors which introduce 90° phase steps 
between consecutive frames. 

It should be noted that each of the three cameras of the EOH system is equipped with its 
own speckle interferometer. The speckle interferometers combine the object beam with the 
reference beam, associated with the specific camera, and direct them collinearly toward the 
detector arrays of the CCD cameras. 

Fie. 8.3. Overall view of the EOH svstem with three cameras. 

In the EOH system, the CCD cameras detect the interference patterns, corresponding to 
the cameras' directions of observation as defined by the vectors K™, where the superscript 
m = 1,2,3 designates the number of the camera, and send the signals to the pipeline processor, 
Fig. 8.2. In the processor, the sequential frames obtained from each of the three cameras are 
processed as discussed in Section 8.2. All computations are done in a pipeline processor which 
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Fig. 8.4. Close up view of the optomechanical setup of the EOII system with three cameras. 

Fig. 8,5. Close üp view of the three cameras of the EOH system. 
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Fig. 8.6. Generation of the object and three reference beams for the EOH system 
with three cameras. 

•ig. 8.7. Multiple beam generation subsystem and camera-! of 
the EOH system with three cameras. 
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Fig. 8.8. Close up view of the multiple beam generation subsystem of 
the EOH system with three cameras. 

Fig. 8.9. Close up view of the beamsplitters and the beam shaping lenses 
of the EOH system with three cameras. 
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operates under control of a host computer. The host computer also controls excitation of the 
object, coordinates it with the bias vibration imposed on the object beam, and keeps track of the 
90° phase stepping between the frames. 

Fig. 8.10. Display monitor of" the EOH system with three cameras. 
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By operating on each input image and its three predecessors, the pipeline processor 
produces a hologram of the object being studied for each of the three noncoplanar views of the 
three cameras, respectively. The resulting three holograms, i. e., one hologram for each of the 
three cameras of the EOH system, can be viewed concomitantly on the TV monitor. Such 
holograms are produced for the zero, as well as the positive and the negative bias vibrations, for 
each resonance frequency of the object; a procedure for setting up the bias vibration is discussed 
in Section 8.3.2. The resulting three electronic holograms, for each of the three cameras of the 
EOH system, i. e., a set of nine holograms for a given loading condition of the object, are then 
processed by the host computer to determine spatial distribution of the displacement vectors 
which can be viewed directly on the computer monitor. 

Representative results obtained using the EOH system are included in Appendices A to F 
and in Section 8.4. 

8.3.2. Setting the bias vibration 

In order to interpret electronically recorded time-average holograms quantitatively, both 
the magnitude and the phase of the bias vibration must be known. One method to set the bias 
vibration is as follows. 

Adjust object excitation so that several J0 fringes are seen across the object and the 
zero-order fringe is well identified. Then, increase magnitude of the bias vibration until the 
zero-order fringe is lost. Following this, adjust phase of the bias vibration until the zero-order 
fringe is regained and its width is maximum. At this point, phase of the bias modulation equals 
the phase of the vibrating object. 

Next, turn off object excitation and reduce magnitude of the bias vibration to zero - do 
not, however, change the bias phase! Then, slowly increase magnitude of the bias vibration until 
the entire object goes black, that is, when the first null of J0 occurs. At this point, the value of B 
is 2.40438, which is the argument of the first zero of the J0, as shown in Fig. 7.2 and Table 7.1. 
Record the voltage output of the bias modulation controller for this condition and reset it by a 
scaling factor. The scaling factor is the desired magnitude of the bias vibration (e. g., TC/3) 

divided by 2.40438. The phase of this bias vibration should be recorded; it corresponds to the 
positive-shift modulation. This completes calibration of the magnitude and the phase of the bias 
vibration. At this time, the sequence of the three holograms can be recorded. Before this is 
done, however, the bias excitation should be turned off, the object excitation should be turned on, 
and the excitation magnitude should be adjusted to the desired level. 

When the desired object excitation is achieved, the first time-average hologram is 
recorded without the bias excitation; this is the zero-bias modulation. Then, the second 
hologram is recorded after switching on the bias excitation with the magnitude and phase as set 
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above; this is the positive-shift bias modulation. Finally, the phase of the bias excitation is 
shifted 180° with respect to that used during recording of the second hologram, the bias 
magnitude is kept the same, and the third hologram is recorded; this is the negative-shift bias 
modulation. Irradiances of the three time-average holograms recorded in this way are 
represented by Eqs 8.73 to 8.75, respectively. Note that the bias vibration should be recalibrated 
for each vibration frequency of the object. 

8.4. Representative applications of the EOH system 

The EOH procedures discussed in this chapter were implemented and representative 
results of this implementation are included in this section and in Appendices A to F. 

8.4.1. Development of an automated fringe unwrapper 

It should be noted that implementation of the EOH required development of a new 
method for unwrapping two-dimensional periodically discontinuous phase data generated by the 
EOH system while recording images of the objects being investigated. Detailed description of 
the method is given in Appendices B to D. 

The method, foundations of which lie in the minimization of the energy of the surface 
determined by the unwrapped data, fits planar surface patches to EOH acquired data, then uses 
the parameters of the planar patches to estimate the value of the pixel under consideration. At 
each pixel, a new value composed of the sum of the original value and an integral multiple of the 
magnitude of the phase discontinuity is assigned. Processing proceeds along an expanding 
wavefront originating from a seed point chosen as the reference for the measurements. The facet 
based fringe number selection method has been found highly reliable even for incomplete, noisy 
data. 

The phase unwrapping method is based on the definition of the energy of a surface as 
being proportional to the change in slope over a surrounding neighborhood. Since full field 
iterative approaches were deemed to be inappropriate for the inherently sequential problem of 
assigning fringe orders, techniques for estimating surface characteristics based on a set of known 
neighbors' values seemed the best approach to pursue. Facet based surface modeling provides a 
means of estimating an unknown value at a given location based on known values of its 
neighbors. The facet model was generalized to work on the sparse, weighted neighborhoods 
available in the unwrapping problem to construct the facet based phase unwrapper. Energy 
minimization was accomplished by finding a complete set of fringe order assignments over the 
non-zero weighted locations such that no other arrangement of assignments can be found to give 
a smaller total deviation of the surface from planarity. As such, the energy minimization 
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approach gave a solid framework for the construction of the phase unwrapper developed during 
this project. The preliminary results obtained using this unwrapper show great promise for future 
applications. 

8.4.2. Determination of three-dimensional displacements by EÖH 

Typical results obtained using the BOH system with three cameras are shown in Figs 8.11 
to 8.14. All interferograms shown in these figures, as well as those included in Appendices A to 
F were produced electronically using the BOH system developed during this project. 

(a) (b) (c) 
Fig. 8.11. Cantilever plate vibrating at its third flexure mode, three non-coplanar EOH 

images simultaneously recorded by: (a) camera-1, (b) camera-2, and (c) camera-3. 

It should be noted that the three camera EOH system, developed during this project, 
acquires the three non-coplanar images, Fig. 8.11, simultaneously, one image per each camera, 
respectively. The interferometric data are processed electronically to produce wrapped (i. e., 
discontinuous) phase distributions, Fig. 8.12. These phase distributions are, in turn, unwrapped 
to generate (continuous) phase maps, Fig. 8.13, representing the digitally acquired images. 
Finally, the set of three phase maps, corresponding to the specific loading condition of the object 
being studied, is processed electronically to obtain the three-dimensional displacement fields, 
Fig. 8.14. This figure shows primary displacement component in the z-direction, with negligible 
x- and ^components of the displacement, indicating out-of-plane (transverse) vibration of the 
plate. 
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Fig. 8.12. Typical wrapped phase, corresponding to 
the EOH image of Fig. 8.1 la. 

(a) (b) (c) 
Fig. 8.13. Unwrapped phase maps, corresponding to the EOH images of Fig. 8.11, 

as recorded by: (a) camera-1, (b) camera-2, and (c) camera-3. 

8.5. Conclusions 

The results presented in Section 8.4.2 and Appendices A to F show that the EOH system 
effectively records high quality electronic holograms of objects subjected to static and dynamic 

8-23 



Fig. 8.14. Wireframe 
representation of the 
three-dimensional 
displacements 
computed from the 
unwrapped phase maps of 
Fig. 8.13: 
(a) x-component, 
(b) ^-component, and 
(c) z-component. 
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loads. These results also show that displacements can be extracted from the electronically 
recorded holograms using the procedures described in this report. 

Using the EOH system, developed during this project, results are obtained in a truly 
totally automated manner. The interferometric information is recorded electronically at the rate 
of 30 frames per, second, it is processed in a pipeline fashion, and produces results which have 
very high spatial density - currently at up to 512x480 points per image (frame). These results 
correlate well with the computational (i. e., FEM) predictions of the displacement fields of the 
objects subjected to static and dynamic loads. 

The results presented in this chapter and in Appendices A to F demonstrate viability of 
the EOH system for avionics durability analysis and validation. 

Continued work is needed to merge, within the host computer, the results obtained from 
the EOH system with the computational procedures of the FEM. This will result in a hybrid 
system which will allow totally automated, quantitative approach for avionics durability analysis 
and validation. 
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9. ELECTRONIC SHEAROGRAPHY 

Design optimization of the load resisting structures requires analysis of stresses in their 
components. These stresses are related, via the governing equations, to the structural 
components' boundary, initial, and loading conditions, their dimensions, geometries, and material 
properties. The governing equations also relate the stresses to surface strains and curvatures, 
which, in turn, are related to the first and the second spatial derivatives of displacement, 
respectively. 

One way to obtain the derivatives necessary to analyze stresses in the structures is by 
differentiation of displacements that these structures undergo in response to the applied loads. 
Differentiation, however, is very laborious and, in general, is a source of considerable errors. 
The magnitude of the differentiation errors depends on the accuracy with which the 
displacements are measured. 

The most desirable way, however, to obtain the displacement derivatives, is to measure 
them directly, without differentiation of the displacements. Although direct mechanical 
differentiation is possible, its accuracy is not adequate to satisfy the measurement requirements. 
However, various approaches, based on optical methodologies, have been advanced 
successfully1. 

In 1954, a reflective moire method has been presented and allowed direct measurements 
of the displacement derivatives2. However, in order for the method to work, a cylindrical grating 
had to be used and the measured surfaces of the test specimen had to be of mirror quality. In the 
mid 1960's, this method was improved when the cylindrical grating was replaced by a planar 
grating3. In 1970, the method was further improved by using a projected grating which allowed 
selection of the measurement sensitivity4. However, the method still required mirror like surface 
preparation of the specimen, which was a handicap. 

The handicap of the reflective moire method has been overcome, in an elegant way, in 
1974, when Hung and Taylor proposed a new method5, which they called speckle-shearing 
interferometry. This method does not require that the surfaces of the specimens be of mirror 
quality. In fact, it requires that the measured surfaces be optically rough so that the coherent 
light scattered by them interferes randomly to form alternating bright and dark patches. These 
patches are known as speckles, and these, in turn, form speckle patterns. The speckle patterns 
give a grainy appearance to the surface illuminated by a coherent light. This grainy appearance 
is known as the speckle effect. 

In the speckle-shearing interferometry, double-exposure interferograms are made 
recording changes in the speckle patterns, in response to the corresponding changes in the 
applied loads5"8. At the time the method was proposed, these recordings were made by using a 
shearing mechanism which comprised of pieces of glass installed in front of an imaging lens. 
Also, the sheared images were recorded in high resolution photographic media. This process was 
laborious, time consuming, and not suitable for real-time applications. 
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Current trend in the speckle-shearing interferometry is to perform all of its operations 
electronically. That is, the trend is to electronically: 1) record the interferometric data, 2) store 
these data, 3) process them, and 4) display the results in real-time. Because in its current 
implementation each operation of the method is performed electronically, this method is known 
as electronic shearography. 

The same trend toward direct electronic recording and processing of the interferometric 
data is evident in the methods of hologram interferometry. As a result, the method of electronic 
holography has evolved. 

In the following sections, fundamentals of the electronic holography and electronic 
shearography are outlined, their implementation is discussed, and representative results, obtained 
by working these systems side by side, are presented. 

9.1. Electronic holography 

Electronic holography, also known as Electro-Optic Holography (EOH), or TV 
holography, measures irradiances produced by mutual interference of the object and the reference 
fields recorded electronically by a CCD camera9"12, see also Chapter 8.   These measurements can 
be made either under static or dynamic loading conditions12"14. The static measurements are 
implemented using the double-exposure hologram interferometry, while the dynamic 
measurements are implemented by the time-average method. Processing of this interferometric 
information and display of the results are carried out concomitantly with measurements of the 
irradiances, as discussed in Chapter 8. 

The image of a loaded object, in the case of the electronic recording of a double-exposure 
hologram, can be described by the irradiance distribution for the n-th sequential frame, at the 
detector array of a CCD camera, as 

7„=/o+/, + 2AoArcos(A(p + Q + A0„)   , (9.1) 

where the coordinates x and y were omitted for simplification, I0 and lr are the irradiances of the 
object and the reference fields whose amplitudes are A0 and Ar, respectively, A(p is the phase 
difference between the two fields, A0„ is the n-th finite phase step imposed on the reference 
beam between the sequential frames, and Q is the fringe-locus function, constant values of which 
define fringe loci on the surface of the object. The irradiance for the unloaded object is described 
by an equation similar to Eq. 9.1, except that the fringe-locus function equals zero, in this case. 

Operating on the irradiances given by Eq. 9.1, corresponding to a sequence of four frames 
recorded with a known phase step imposed between each frame, we obtain an electronic 
hologram that is modulated by a fringe pattern, FP, which is described by the equation14 
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FP = 32AlA2
r(\+ cos SI)   . (9.2) 

The fringe-locus function, appearing in Eq. 9.2, is defined as 

Q = K>L   , (9.3) 

where L is the unknown displacement of the object and K is the sensitivity vector defined as a 
difference between vectors K2 and Ki, specifying the directions of illumination and observation 
in the holographic setup, that is, K = K2 - Ki, as discussed in Chapter 2. Since the sensitivity 
and displacement vectors have three Cartesian components, Eq. 9.3 can be rewritten as 

Sl = KxLx + KxLy + KzLz   . (9.4) 

Procedures for the solution of Eq. 9.4 for the components of L have been worked out and are 
discussed in Chapter 4 and in References 9.15 and 9.16. 

Quantitative data on the object displacements are obtained by processing the images 
using procedures of Reference 9.14 and of this chapter. These procedures extract data from 
electronically recorded holograms by a method of optical fringe shifting10. 

9.2. Electronic shearography 

Electronic shearography is an interferometric technique that permits full field observation 
of surface displacement derivatives. It employs an image shearing device which brings two 
neighboring points on the object surface to interfere in the image plane. By comparing the 
interference patterns before and after deformation, a fringe pattern depicting derivatives of the 
surface displacement is produced. 

Electronic shearography is a computerized process that depends on concomitant 
processing of interferometric data to generate fringe patterns representing derivatives of the 
surface displacements. A typical configuration of the electronic shearography system is shown 
in Fig. 9.1. In this configuration, the object is illuminated by a coherent laser light from a point 
source, PSI. The light modulated by interaction with the object is imaged by the lens IL. The 
imaged light is split into two parts by a cube beamsplitter (CBS). In the configuration shown in 
Fig. 9.1, one of these parts is sheared by SA, while the other part is modulated by imposition of 
discrete phase steps by PS. Then, both beams are combined and redirected by the CBS to 
collinearly impinge on the sensing element of the CCD camera. The irradiance distribution 
recorded by the camera is described by Eq. 9.1, which defines a speckle pattern that is unique for 
a given set of the shearogram recording conditions. 
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OBJECT 

TM 

HC 

CM 
Fig. 9.1. A typical configuration of the electronic shearography system: PSI is the 

point source of illumination, Kj and K2 are the vectors defining the 
directions of illumination and observation, respectively, EL is the imaging 
lens, SA is the shear adjusting mirror, PS is the phase stepper controlled 
mirror, CCD is the TV camera, TM is the TV monitor, HC is the host 

computer, and CM is the computer monitor. 

In the configuration shown in Fig. 9.1, the DL, CBS, SA, PS, and CCD comprise an image 
shearing camera. The role of the image shearing camera, in the electronic shearography process, 
is to bring the light rays scattered from one point on the surface of the object to interfere with 
those scattered from a neighboring point. Since the object is illuminated by a laser light, the rays 
from the two points interfere producing a speckle pattern. When the object is displaced and/or 
deformed, a relative displacement between the two points occurs. This relative displacement 
induces a corresponding phase change that modifies the interference speckle pattern. That is, the 
speckle patterns change as the object loading conditions change. Comparison of the two slightly 
different speckle patterns results in moire fringes that depict the derivatives of surface 
displacement with respect to the direction of shearing. 

The procedure for the electronic recording, processing, and display of the interferometric 
data in electronic shearography is the same as that described in Section 9.1 and Chapter 8. 
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If the shearing direction is parallel to the x-axis, then, two points separated in the 
x-direction are brought to interfere. If the magnitude of this shearing is sx, the derivatives (with 
respect to x) of the displacement vector L can be related, using Eq. 9.4, to the fringe- locus 
function and the sensitivity vector as 

r)Z„-         oLv         9L, Q=<*-1b+*'a.+*'a> (9.5) 

Similarly, if the shearing is in the v-direction, the derivatives (with respect to y) of L can be 
related to Q, and K as 

dLx .„^Ly        dL -- + Ky— + Kz— a = (Kx^ + Ky^ + Kz^)sy   , (9.6) 

where sy is the magnitude of the shearing in the y-direction. 

There are a number of implementations of Eqs 9.5 and 9.6 in specific applications. The 
application of particular interest to this study relates to characterization of the out-of-plane 
displacements of a cantilever plate. In this case, the in-plane displacement derivatives are 
negligible in comparison with the out-of-plane displacement derivative. Therefore, recalling that 
the fringe-locus function is proportional to the fringe order, n, with the proportionality constant 
equal to 2n, it can be shown, using Eq. 9.6, that 

"=s*#> ■ (9J) 

In general, the shearograms are recorded using a setup having the directions of 
illumination and observation optimized for the specific application. That is, the sensitivity vector 
is known and remains invariant during the sequential recording of the shearograms. 
Furthermore, a specific loading condition also remains invariant during the data acquisition 
sequence. As a result, using the equations defining elastic behavior of a cantilever plate in 
bending, we can show that the out-of-plane displacement derivative is given by the relationship 

dLz_   6F 
dy     Ebh- 

y(2L-y)   , (9.8) 

which indicates that dLz/dy, or the local surface slope at a specific position y on the cantilever 
plate, is uniquely defined by the magnitude of the loading force F, the dimensions L, b, and h of 
the plate, and the modulus of elasticity E of the plate's material. Clearly, the displacement 
derivative at a specific position y is invariant, for a given set of parameters defining the right 
hand side of Eq. 9.8. 

The foregoing discussion indicates that the values of Kz and dLz/dy, appearing in Eq. 9.7, 
are constant for a given application and a specific loading condition. Therefore, according to Eq. 
9.7, the number of fringes seen during observation of a shearogram will be directly proportional 
to the magnitude of the shear sy. 
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Starting with Eq. 9.5, we can also show that for a given application and a specific loading 
condition, the number of fringes seen during observation of a shearogram will be directly 
proportional to the magnitude of the shear sx. 

In the electronic shearography system, described in this chapter, the magnitudes of 
sx and sy can be adjusted independent of each other. This feature allows convenient means for 
selection of measurement sensitivity, over a wide range of values, which is a particular advantage 
that the electronic shearography has over other optical measurement methods. 

9.3. Representative results and discussion 

Representative results, obtained during this study, are shown in Figs 9.2 to 9.10. These 
results are for the cantilever plate which was subjected to static and dynamic loads. The 
interferograms corresponding to these loads were recorded using the electronic holography and 
the electronic shearography systems working side by side. 

W    % 

Fig. 9.2. Double-exposure electronic holograms of the cantilever plate in bending 
by a static load of: (a) 1 gram, (b) 3 grams, and (c) 5 grams. 

Figure 9.2 shows reconstructions of three double-exposure electronic holograms of the 
cantilever plate under static loads which ranged from 1 gram to 5 grams in 2 gram increments, 
respectively. Note that the number of fringes increases from approximately 8, in Fig. 9.2a, to 
approximately 40, in Fig. 9.2c, as should be expected. In fact, the number of fringes determined 
directly from the electronic holograms correlated to within 0.1 fringe with the number of fringes 
estimated using the theoretical procedures based on the elastic deformation of the cantilever 
plate, under the static loading conditions for which the holograms of Fig. 9.3 were recorded. 
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This resulted in the correlation to better than 1 % between the displacements determined from 
electronic holograms and those estimated theoretically. 

The images shown in Fig. 9.2 indicate almost pure out of plane bending, except In the 
regions close to the free end of the plate, in the vicinity of the point of the force application. 
These changes can be related to the displacement derivatives, i. e., to the local surface slopes that 
can be detected by the electronic shearography. 

(a) (b) 

Fig. 9.3. Shearographic interferograms of the cantilever plate in bending by a static load 
of 5 grams: (a) sy= 15 mm, (b) sx= 15 mm. 

(3) m 
Fig. 9.4. Shearographic interferograms of the cantilever plate in bending by a static load 

of 5 grams: (a) sv= 25 mm, (b) sx ~ 25 mm. 

Figures 9.3 and 9.4 show the shearographic interferograms, recorded for two different 
magnitudes of the shear, corresponding to the static loading condition of Fig. 9.2c. The 
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shearograms of Fig. 9.3 were recorded for the case of sx = s = 15 mm, while those shown in Fig. 
9.4 were recorded when sx = sy = 25 mm. These results clearly show that the number of fringes 
increased in proportion to the increase in the magnitude of the shear, which is in agreement with 
the arguments presented in Section 9.2. However, it should be noted that as the magnitude of the 
shear increases, so does the difference between the theoretically estimated local displacement 
derivatives and those determined directly from the electronic shearograms. 

For the object and the loading conditions presented in this chapter, the displacement 
derivatives determined from the electronic holograms were lower than the theoretically estimated 
ones. 

Figures 9.5 to 9.7 show the shearographic images for the cantilever plate loaded with a 
static load of 10 grams and the magnitudes of shear equal to 25 mm, 10 mm, and 3 mm, 
respectively. 

Comparison of Fig. 9.4 (static load of 5 grams) with Fig. 9.5 (static load of 10 grams), 
both of which were recorded with the shear of 25 mm, indicates doubling in the number of the 
shearographic fringes because of the doubling in the static loading force, in accordance with the 
discussion in Section 9.2. However, the magnitude of the local slope determined from these 
shearograms was approximately 16% lower than the slope estimated theoretically. 

As the shear reduced, while maintaining a static load of 10 grams and holding other 
characteristic parameters constant, so did the difference between the magnitudes of the local 
slopes determined from the electronic shearograms and those estimated. For the case shown in 
Fig. 9.7 (shear equal to 3 mm), the corresponding difference was approximately 1%. 

Although electronic shearography is primarily used to study structures under static, or 
quasi-static loads, it can also be very effective while studying dynamic behavior of resonating 
structures. Figures 9.8 and 9.9 show side by side results obtained by the electronic holography 
and the electronic shearography recording the cantilever plate (the same as that used to obtain 
results shown in Figs 9.2 to 9.7) resonating at 425 Hz and 1591 Hz, respectively. The 
holographic images vividly demark the mode shapes characteristic of the specific resonance 
frequency while the shearographic images show the displacement derivatives in the lateral 
directions parallel to the plane of the cantilever plate. Comparison of the holographic and the 
shearographic results shows good correlation. 

9.4. Conclusions 

In this chapter, viability of electronic shearography to study behavior of a cantilever plate 
under static and dynamic loading conditions was investigated, with reference to electronic 
holography (see Chapter 8) and a preliminary comparison of their respective results was made 
while the methods were working side by side. In particular, examination of parameters 
characterizing recording of images by electronic shearography was made. 
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Fig. 9.5. Shearographic 
interferograms of the cantilever 
plate in bending by a static 
load of 10 grams: (a) sy = 25 
mm, (b)^=25mm. 

(a) (b) 

Fig. 9.6. Shearographic 
interferograms of the cantilever 
plate in bending by a static 
load of 10 grams: (a) sy= 10 
mm, (b) $x= 10 mm. 

0» 

Fig. 9.7. Shearographic 
interferograms of the cantilever 
plate in bending by a static 
load of 10 grams: (a) sy = 3 
mm, (b) sx = 3 mm. 
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Fig. 9.8. Cantilever plate vibrating at 425 Hz: (a) the time-average electronic hologram, 
(b) the electronic shearogram displaying displacement derivative in the ^direction, and 

(c) the electronic shearogram displaying displacement derivative in the ^-direction. 

<.'» (b) <o 

Fig. 9.9. Cantilever plate vibrating at 1591 Hz: (a) the time-average electronic hologram, 
(b) the electronic shearogram displaying displacement derivative in the y-direction, and 

(c) the electronic shearogram displaying displacement derivative in the ^-direction. 

The results shown in this chapter indicate that because of the electronic holography's 
inherent sensitivity, fringe frequencies become very high rapidly and often hinder determination 
of local deformations which are of interest. This obstacle is overcome, to a certain degree, by 
electronic shearography which is particularly suitable for determination of the local displacement 
derivative fields. 
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The results presented indicate that the accuracy in the shearographic determination of the 
local displacement derivatives depends on the magnitude of the shear introduced while recording 
the interferograms. In this study, shears ranging from 3 mm to 25 mm were used. The 
preliminary data show that the difference between the shearographic and the theoretical results 
decreases as the magnitude of the shear decreases, from approximately 16% for 25 mm shear to 
approximately 1 % for the 3 mm shear. 

In addition, this study demonstrates the viability of the electronic shearography for 
studies of objects under the condition of resonance. It is particularly interesting to see a side by 
side comparison of the fringe patterns produced electronically while imposing shears in the 
directions normal to the direction of the predominant component of the displacement vector and 
how they relate to the conventional mode shapes obtained by the electronic holography. 

Work on side by side developments of electronic holography and electronic shearography 
will continue. 
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10. HYBRID APPROACH TO DEFORMATION ANALYSIS 

Current trends in development of components, structures, and systems place 
unprecedented requirements on their designers. To satisfy these demands, new, highly efficient 
materials and structural designs are being employed and integrated utilization of the most 
sophisticated technologies is being made. This chapter addresses some of the pertinent issues 
relating to this integration and explores how to take advantage of the analytical, computational, 
and experimental solution methodologies in relation to a given problem. More specifically, a 
hybrid approach to deformation analysis is described, based on recent developments in merging, 
or unifying, of the finite element method with experimental methodologies, and especially with 
optical metrology. This approach emphasizes the analogy between the methodologies used and 
employs them to obtain solutions that may not have been otherwise obtainable, to ease the 
existing solution procedures, or to attain improvements in the results. The chapter begins with an 
introduction to the methodologies used, continues with a discussion of the analytical 
fundamentals, and concludes with a presentation of representative results. 

10.1. ACES methodology 

Continued demands for development of optimum and reliable designs have led to 
advancement of a number of solution methodologies. These methodologies can, in general, be 
classified as Analytical, Computational, and Experimental Solutions, and constitute, what this 
author calls, ACES approach to design problems, or, in fact, any type of problems which can be 
solved either by analytical, or computational, or experimental method, or a combination of these 
methods; depending on the needs of a specific problem, this combination involves at least two 
methodologies from one or more of the three classifications. Certainly, each methodology has a 
considerable advantage over the others, for a given class of problems. In many cases, the data 
furnished by one methodology have been utilized by the other methodologies to make the 
solutions possible1"10. 

Analytical methodologies are characterized by exact closed form solutions and make use 
of infinitesimal elements. Computational methodologies make use of finite size elements in 
discretization of the physical domain and provide approximate solutions. Experimental 
methodologies employ, in general, actual objects subjected to real operating conditions, to 
provide information on responses of the objects to the applied loads. 

Because of increased availability and capability of the number crunching equipment, in 
recent years, formulation of problems has shifted from exact to approximate. This shift has also 
developed an increasing dependence on the experimental methodologies to "bridge the gap" 
between the other two methodologies. In fact, the need for processes for unifying, or merging, 
some or all of these methodologies was recognized a number of years ago. One of these 
processes, with which this author is most familiar, was initiated in 1972 and resulted in the 
International Invitational Symposium Series dedicated to Unification of Solution Methodologies. 
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The theme of each symposium in this series relates to a topic of current interest at the time of the 
symposium. For example, the 1991 Symposium dealt with unification of finite element methods 
through parallelism in analysis and experimentation11, while the 1993 and 1995 Symposia 
addressed unification of analytical, computational, and experimental solution methodologies in 
micromechanics and microsystems12,13. Continued trends in unification of the solution 
methodologies indicate that in spite of recent advances in number crunching equipment, which 
have drawn considerable attention to the computational methodologies, including finite 
difference methods (FDM), finite element methods (FEM), and boundary element methods 
(BEM), the importance of experimental and analytical methodologies has not diminished. 

Out of the computational methodologies available today, demands for optimum and 
reliable design are, to a great extent, satisfied by application of FEM. In these applications, the 
FEM are used to solve problems for which exact solutions are nonexistent, or, at the best, are 
very difficult to obtain. Also, the FEM are the only way to analyze complex three-dimensional 
structures, response of which to applied load system cannot be predicted in any other way. 
However, results obtained by the FEM are subject to the boundary conditions used, rely greatly 
on the accurate knowledge of material properties, depend on accurate representation of geometry 
of the objects being modeled, and are sensitive to the shape and size of elements employed in 
modeling. The information necessary to "run" the finite element models is obtained either from 
published data, or from design specifications, or from experimental studies, or from a 
combination of any of these sources. 

As is often the case with new and powerful methods, the FEM have been over-used, 
perhaps even misused. Only recently have we begun to realize that virtually all versions of FEM 
contain shortcomings. As a result, the need for unifying (merging, coupling, or hybridizing) 
FEM in the physical and time domains with other methods has begun to manifest itself14"17. This 
need has led to merging of FEM with experimental methods. Initially, this merging involved 
"electro-mechanical" approaches to experimentation via, e. g., strain gage and accelerometer 
methods. Then, optical methods have begun to play more and more prominent role in this 
merging. One of these merging efforts is based on unification of the optical methods, employing 
laser experimentation, with FEM in space and time simultaneously18'19. 

In the following, the FEM is briefly described with emphasis on unification in error 
analysis and in evaluation of element matrices. Next, fundamentals of laser experimentation are 
introduced based on the modern methods of hologram interferometry. Then, a unified, or hybrid, 
approach to solution of specific problems is discussed and illustrated with representative results. 

10.2. Finite element method 

The finite element method20"25 is a computational analysis technique for obtaining 
approximate solutions to a wide variety of engineering problems. In a continuum problem of any 
dimension the field variables, such as displacement, stress, temperature, etc., possess infinitely 
many values because they are functions of each generic point in the body, or solution region. 
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Consequently, the problem is one with an infinite number of unknowns. The finite element 
discretization procedures reduce the problem to one of a finite number of unknowns by dividing 
the problem into elements and by expressing the unknown field variables in terms of assumed 
approximate functions within each element. The approximate functions, sometimes called 
interpolation functions, are defined in terms of the values of the field variables at specified points 
called nodes or nodal points. Nodes usually lie on the element boundaries where adjacent 
elements are considered to be connected. In addition to boundary nodes, an element may have a 
number of internal nodes. The nodal values of the field variables and the interpolation functions 
for the elements define the behavior of the field variables within the elements. For the finite 
element representation of a problem, the nodal values of the field variables become the 
unknowns. Once these unknowns are found, the interpolation functions define field variables 
throughout the assemblage of elements. 

Clearly, the nature of the solution and the degree of approximation depend not only on 
the size and number of the elements used, but also on the interpolation function selected. As one 
would expect, we cannot choose the functions arbitrarily, because certain compatibility 
conditions must be satisfied. Often, functions are chosen so that the field variables, or their 
derivatives, are continuous across the adjoining element boundaries. 

An important feature of FEM, that sets it apart from other computational methods, is its 
ability to formulate solutions for individual elements before putting them together to represent 
the entire problem. This means that if we are treating a problem in stress analysis, we can find 
the force-displacement, or stiffness, characteristics of each individual element and then assemble 
the elements to find stiffness of the whole structure. In essence, the solution of a problem 
reduces to a process of considering a series of greatly simplified problems. At the end of this 
process, field variables are known and constitute an approximate solution to the problem. 
However, a very important issue relating to the FEM solution, or, in general, to any approximate 
solution, is the accuracy of the results, which relates to the unification in error analysis, as 
discussed in Section 10.2.1. 

10.2.1. Unification in error analysis 

How good are the approximate results? What are the upper bounds of errors? Such 
questions have often been asked though answers have not always been found19. Nevertheless, 
problems were solved and systems were put into service. The easiest response to these questions 
has always been the use of a factor of safety (FS) big enough to account for all uncertainties. 
How big should it be has, of course, been another question. If it was big enough, the engineer 
was successful; if not, the engineer was doomed. 

An alternative approach to these questions has been to experiment (full scale, half scale, 
whatever) before putting the system into service. Recognizing that things designed and built 
yesterday were not as complex as those designed and built today, experimentation and the choice 
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of FS were relatively easier tasks then than they are today. In recent years, however, the 
availability of computational tools, both in respect to methodology and equipment, has enabled 
engineers to design very complicated systems by successfully solving very difficult problems. 
Nevertheless, one question raised above still remains: how good are the results? 

Development of fully automatic self-adaptive processes is one of the most crucial needs 
of finite element computations today. To achieve this, one must not develop algorithms based on 
the computed information alone. Instead, information based on actual measurements, made 
during the processing, must also be incorporated into the algorithms. These measurements, or 
observations, should be employed not only for verification of the computed values of the 
unknown function, as is often done, but also for estimating or even controlling errors. 

When discretizing the domain, engineers generally pay attention to certain regions of the 
domain which are critical or very sensitive to changes in parameters. Localized error norms in 
these regions may fluctuate drastically, or even diverge, as in the case of ill-conditioned systems 
of equations. If uc and um represent the computed and the measured values of the unknown 
function, respectively, then the error ec or em, corresponding to these values, can be defined as 
either 

ec = uc-u       or       em — um — u   , (10.1) 

where u is the correct answer. Moreover, if the measurements are of very high accuracy and 
precision, then it is suggested that em be employed for error estimates and for adaptive processes 
in the critical regions of the domain rather than ec. 

In structural mechanics problems, the energy of the error, r\, corresponding to a particular 
solution over a region A, can be represented as19 

T] = jerdA   , (10.2) 
A 

where r represents the residual forces. One way to obtain a possible refinement on u is by using 
a hierarchic mode Np+\, i. e., the finite element basis function for the polynomial of degree p+1. 
Since the energy absorbed by this additional mode is assumed to be directly proportional to the 
corresponding force and inversely proportional to the stiffness, Eq. 10.2 can be written, for the 
z'-th element, as 

2    (JN^ndAQ2 

where r, represents the residual forces, Np+i denotes the mode for the polynomial of degree p +1, 
and Sa are the elements of the stiffness matrix. Equation 10.3 suggests that among all the 
available Np+i solutions the one that gives the greatest error decrease should be chosen as the 

10-4 



new refinement. One should, however, make sure that Np+i is not orthogonal, otherwise r|, = 0 
may lead to a deceptive estimate of error. 

10.2.2. Unification in evaluating element matrices 

Experimental techniques can be used not only for error estimates, but also for direct 
evaluation of the element stiffness and/or flexibility coefficients. In particular, when an 
element's shape is irregular, i. e., when it possesses curved lines and surfaces, which is often the 
case at the free boundaries, even using higher order isoparametric elements may not yield the 
accuracy desired. The mesh refinements for those elements would, on the other hand, increase 
the number of equations to be solved, thereby decreasing the accuracy of the results. In the case 
of solid elements, whether one-, two-, or three-dimensional, the stiffness matrices can be 
obtained experimentally. For this we shall refer to Castigliano's theorem in tensor notation26, 
i.e., 

p* = !^   , (10-4) 
dUiq 

where 

W=y«uiq   , i=l,2,...,n   , 9=1,2,3 (10.5) 

represents strain energy stored in the element. Substituting Eq. 10.5 into Eq. 10.4 and keeping in 
mind that 

du 
5-^=1   for   i,q=j,r,    respectively, and zero otherwise, (10.6) 
OUiq 

the results is 

?" = lp>   , (.0.7) 

which can be rewritten as 

pici=S^rUjr   . (10.8) 

The quadrivalent tensor of Eq. 10.8 represents the stiffness matrix of the element. 
Furthermore, Eq. 10.8 indicates that the stiffness, or flexibility, matrix coefficients can be 
determined by observing, or measuring, the changes in piq with respect to changes in ujr, or vice 
versa. Note that in Eq. 10.8 / and /' represent the nodes, i. e., the integration points in the 
standard FEM, of the element, while q and r denote the directions of (local and global) 
coordinate axes. 
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Today, there are a number of procedures that can be used to evaluate the stiffness, or 
flexibility, matrix coefficients of an element of any shape and material. In this chapter, however, 
the procedures utilizing optical techniques are emphasized. Since the measurements are 
continuous, i. e., they are independent of time and path, the stiffness matrix coefficients for those 
elements, highly nonlinear both in respect to time and path, can be determined at any increment 
of time and/or load. These coefficients can then be incorporated into the global S prior to the 
solution procedure. 

Let us assume that the overall stiffness matrix is partitioned as follows: 

Pi [5u]c>mi[Sl,2]6.ml[Sl,3]c u\,c 

„P3  _ 

\[S2,2]JlS2,3]c _l —  _p _ 
symm.                , [S33]c 

"2,c 

_ "3,m 

(10.9) 

where the subscripts c and m identify the computed and measured quantities, respectively, and 
where, in certain portions of the stiffness matrix, the measured and computed elements are 
coupled and identified with subscripts c,m. Equation 10.9 can be further reduced to 

P\ ~ [Sl,3]c"3,/ 

P2-[S2,3]U3,, 

[Sii]      [Si 2] 

[S 2,1 J [^2,2], 

"l,c 

U2,c 
(10.10) 

Since the left side of Eq. 10.10 contains all the known entities, whether given, computed, or 
measured, its solution is possible and will yield the unknown values of the function at the nodes 
where no measurements have been taken. Once we have determined «i, c and w2, c, we can 
compute the residual force vector r as 

r = p3- [53;i] uu - [S3,2] "2,c - [^3,3] "3,m * 0 (10.11) 

The components of the vector expressed by Eq. 10.11, corresponding to the i-th element, can 
then be substituted into Eq. 10.3 to determine the next refinement. In the text which follows, 
laser based experimental methods for obtaining measurements are presented. 

10.3. Hologram interferometry 

Hologram interferometry is a two-step process. During the first step, a holographic 
interferogram of an object being studied is recorded in some photosensitive medium. During the 
second step, the interferogram is reconstructed from the medium by producing an image of the 
object. The image obtained during the reconstruction has all the visual effects that the original 
object would have if it were observed directly. However, in addition to these visual effects, the 
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holographically produced image appears covered by alternating bright and dark bands, known as 
fringes. These fringes encode, in a very elaborate manner, information about displacements and 
deformations that the object has undergone while the hologram was being recorded. Decoding, 
or reading out, the information stored in the holographic fringe patterns leads to very accurate 
quantification of displacement and deformation fields characterizing behavior of the object 
while the hologram was being recorded. The displacement and deformation fields measured 
from holograms can be merged, or unified, i. e., hybridized, with computational methodologies 
to facilitate their solutions. Of particular interest to the developments presented in this chapter 
are the hybrid approaches based on hologram interferometry and FEM. However, the quality of 
this hybridization depends on our ability to accurately and precisely determine orders of fringes 
in the fringe patterns produced during reconstruction of holograms. More specifically, this 
determination relates to accurate and precise measurements of optical phase distributions within 
the holographically produced image and has received considerable attention, over the years, 
resulting in a number of methods which have reached high degrees of sophistication and 
automation and are usually based on one of, but are not limited to, the following ways27: (1) line 
scan, (2) video digitization, (3) heterodyne readout, (4) phase step readout, or (5) direct 
electronic recording and processing of holograms. Although each one of these ways has been 
used, to a varying degree of implementation, in hybrid approaches to deformation analysis, only 
the method based on the direct electronic recording and processing of holograms, will be 
considered in this chapter, for the sake of brevity. This method is known as the Electro-Optic 
Holography (EOH), or simply Electronic Holography, and is the subject of Section 10.3.1; more 
detailed description of the EOH is given in Chapter 8. 

10.3.1. Electronic holography 

Electronic holography is the method based on recent advances in hologram 
interferometry, speckle metrology, and computer technology, Chapter 8. In this method, 
interferometric information is captured by a CCD camera. The output from the camera is fed 
into the electronic system which acquires, processes, and displays optical interference 
information. The EOH method allows automated processing of fringes recorded under either 
static or dynamic loading conditions. In the EOH system, measurements of irradiances produced 
by mutual interference of the object and reference fields are made electronically by a CCD 
camera. Processing of this interferometric information and display of the results are carried 
concomitantly with measurements of irradiation. 

The EOH system is capable of operating in either a viewing mode, used for visual 
examination of the interference patterns, or a data mode, used for quantitative interpretation of 
the EOH images. 

The EOH system is capable of performing either static or dynamic measurements28. The 
static measurements are implemented using the double-exposure hologram interferometry 
method, while the dynamic measurements are implemented by the time-average hologram 
interferometry method, Chapter 8. 
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10.4. Representative applications 

The examples presented in this section are only representative and, by no means, imply 
exhaustive enumeration relating to the unified, or hybrid, applications of FEM and hologram 
interferometry. Hybridization of FEM with hologram interferometry has its start, at least in this 
author's experience, with aerospace applications, particularly as they relate to development of gas 
turbine engines and wing sections. These problems are rather difficult to solve and 
computational methodologies depend on a number of simplifying assumptions and 
approximations which, to be effective, ought to be based on physical data. In these studies, the 
data have been provided by holographic studies based on which the boundary conditions have 
been accurately identified and trends in displacement rates have been visualized directly from the 
fringe patterns.   Figures 10.1 and 10.2 show typical holographic images recorded and the 
quantitative results obtained based on the data obtained from these images1,2,29'30. 
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Fig. 10.1. FEM and holographic study of a gas turbine engine: (a) typical finite 
element discretization of a turbine blade, (b) displacements of a turbine blade - a 
comparison between the results obtained from holograms and the FEM results, 
(c) a fringe pattern showing abrupt discontinuity in the fringe pattern indicating 

stress concentration in the root area. 

Slender structural components are of considerable importance in developing high strength 
to weight structures31,32. Durability of these structures depends, to a large degree, on the dynamic 
characteristics of the slender components. These components are, in general, thin walled and are 
formed into three-dimensional shapes. One of most popular shapes is a channel cross section. 
This shape can be controlled by appropriate selection of the wall thickness and optimization of 
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its length to width and to depth ratios. The shape and the boundary conditions define dynamic 
response characteristics of the thin wall channel beams to the loads acting upon them32. 

Knowledge of the relationship between the applied force system and the resulting tooth 
displacement plays an ever-increasing role in prediction of tooth movement, estimating stress in 
the periodontal ligament, and standardizing histologic studies of tooth movement33"35. FEM 
simulation of orthodontic tooth movement depends on knowledge of mutual interrelationship 
between various sections of the tooth-ligament-bone system, Fig. 10.3. These sections consist of 
various structures: compact bone, spongy bone, periodontal ligament, cementum, dentin, pulp, 
gingival fibers, and enamel. Each of these materials have different (nonlinear, visco-elastic) 
properties which change as a function of daily functions. Monitoring of these properties is very 
difficult using conventional methodologies. However, hologram interferometry, used both 
in-vitro and in-vivo, allowed characterization of tooth response to the applied force systems and 
led to quantification of the effects of time and force on tooth movement. 
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Fig. 10.2. Study of dynamics of the NASA's GAW-2 wing section: (a) profile of the 
airfoil, (b) a typical image reconstructed from a stroboscopic hologram of the airfoil 

vibrating at 3,994 cps, (c) FEM mode shape corresponding to the conditions under which 
the image shown in (b) was recorded. 

Advances in integrated circuit (IC) technologies drive electronic packaging requirements. 
The trend toward miniaturization, which begun with the transistor and progressed rapidly with 
the IC, continues unabated. Designers are constantly attempting to squeeze faster and faster 
processing power out of computers. The methods are numerous: use of wider word widths, use 
of faster clock rates, implementation of higher density packaging in order to decrease 
propagation delays, as well as the use of novel architectures such as parallel processing in order 
to overcome the bottlenecks of traditional serial processing schemes. In attempt to satisfy the 
demanding packaging needs of such applications, the connector designer must develop a 
trade-off solution by balancing various requirements in order to produce a connector combining 
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reliability and performance. In view of these requirements and in addition to manufacturing 
issues, the designer must consider the properties of available materials, the means for practically 
meeting the tolerances of such a high-density design, and the means for modeling and simulating 
the performance of a design with accuracy and reliability. One solution to this need is shown in 
Fig. 10.4. The design represents a departure from conventional designs in that the contact 
resembles a four-armed starfish: one set of arms points downward while the other points upward. 
These orientations of the contacts are formed by bending the arms into arcs located in two 
mutually orthogonal planes which divide the star into four equal quadrants. The contacts are 
designed to act as interposers between two planar surfaces such that two of the arms of each star 
make contacts with each surface; when compressed, the overall height of the starfish is 
approximately 0.5 mm. Development of such a small contact presents several challenges. 
Foremost is the inadequacy of published data for materials. Material properties are generally 
published for bulk test samples whose dimensions are orders of magnitude greater than the sizes 
of the microelectronic contacts. Properties of materials which were required for FEM of the 
contact were simply not available as the project begun. Use of the techniques of hologram 
interferometry, however, provided needed characterization of the properties of small test 
samples36'39. The data obtained allowed computational analysis leading to a detailed 
determination of a load-deflection characteristics and stress fields for the contact experiencing 
large deflections and exhibiting nonlinear behavior. 

SUBJECT No. I 

SUBJECT No. 2 

SUBJECT  No. 3 

CENTER OF 
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CENTER OF 
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z - COORDINATE 

(a) (b) 

Fig. 10.3. Study of the tooth-ligament-bone system: (a) 1 to 8 are typical FEM 
discretization zones, (b) distance from the theoretical center of resistance to the center of 

rotation as a function of time. 
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Fig. 10.4. Miniature star-connector: (a) interconnection 
concept, (b) FEM simulation of displacement versus 
position for a typical arm of the microcontact as a 
function of contact force, (c) FEM estimate of von 
Misses stress (in Mpsi) for a load of 25 g at each tip - 
the microcontact is shown in its deformed state, (d) a 
prototype microcontact, (e) and (f) EOH images of a 
single arm of the micocontact while loaded with a force 
increasing from (e) to (f), respectively. 

(e) (0 
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10.5. Conclusions 

This chapter presents some of the developments relating to hybridization of hologram 
interferometry and FEM methods. This hybrid approach to deformation analysis is a part of what 
we call ACES methodologies, which emphasize the analogy between analytical, computational, 
and experimental methodologies and employs them to obtain solutions that may not have been 
otherwise obtainable, to ease the existing solution procedures, or to attain improvements in the 
results. Use of these methodologies to solution of real problems is illustrated with representative 
examples. 

Continued advances on hybridization of experimental, especially optical, methods with 
the computational methods will lead to development of new tools that will facilitate solution of 
problems hampered by lack of knowledge on behavior of new materials, large deformations, 
and/or inherent nonlinearities. 
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11. QUANTITATIVE EOH AND FEM HYBRID STUDY OF 
VIBRATION CHARACTERISTICS OF AVIONICS 

One of the major challenges in the development of avionics is the requirement to assure 
their reliable functionality while subjected to actual operating conditions which are static and 
dynamic in nature. Of particular interest, to the developments presented in this chapter, are the 
dynamic loading conditions. Because the avionics have certain mass and elasticity, they respond 
to the loads encountered during operation with a specific vibration behavior. Therefore, 
development of reliable avionics packages depends upon our ability to determine the dynamic 
characteristics which define and control their vibration behavior, particularly as it relates to the 
dynamic environment within an aircraft which is a major contributor to the failure of airborne 
avionic systems. In this chapter, computational and experimental hybrid methodology is used to 
quantitatively study the vibration characteristics of avionics. The computational methodology is 
based on the finite element method (FEM). The experimental methodology is based on the 
electro-optic holography (EOH) method, which allows direct electro-optic recording, processing, 
and display of the laser holograms at the rate of 30 holograms per second, making it capable of 
producing quantitative data in nearly real-time. Using the EOH method, displacement 
magnitudes in the submicron range are measured noninvasively over the full field of view, as a 
function of the resonance frequencies. Although some of the experimentally observed mode 
shapes were not predicted using the computational model employed in this study, the correlation 
between the results obtained using the finite element and the electro-optic holography methods 
was otherwise good and the agreement between the corresponding resonance frequencies was 
within 2%. 

11.1. Introduction 

The dynamic environment within an aircraft is a major contributor to the failure of airborne 
avionic systems. Estimates are that 20% of experienced field failures can be attributed to the 
damaging influence of vehicle vibrations1. The level of concern over the influence of vibrations 
on the durability of avionics is reflected in the depth with which this environment is covered in 
military standards on equipment test and design2 and reliability3. Also, as a result of this 
concern, a number of computational tools1,4"9 and experimental methodologies10"13 have been 
developed to assess the impact of vibration on the durability of specific avionic designs. 

Economic considerations combined with the requirements of the Avionics Integrity 
Program14 (AVIP) to predict a specific failure-free life based on a tailored environmental profile 
have resulted in primary reliance on FEM as the computational means to assess the durability of 
avionics in the early stages of their design15"17. Fundamentals of the FEM have been discussed in 
great detail elsewhere18"23 and the reader is referred to the appropriate publications. However, for 
the FEM to be effective, in addition to other input parameters, a priori knowledge of the 
mechanical properties of the materials used in the construction of the avionics is required for the 
size of the structures employed in the design24. In many cases, these properties are neither 
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available nor well defined25 which is mainly because the traditional measurement techniques 
cannot be applied to the structures on the scale of those used in the construction of the modern 
avionics without inherently affecting the outcome. One way to circumvent this difficulty is to 
employ recent developments in laser holographic interferometry methods which allow 
noninvasive measurements of the quantities of interest. Out of a number of the laser methods 
available today, the most suitable one for the study of vibrations of the avionics is the 
time-average hologram interferometry26'27 (TAHI), particularly as it is implemented via 
electro-optic holography28"31 (EOH). 

In the following sections, fundamentals of the TAHI as implemented via EOH are 
presented, with special emphasis on the quantitative analysis of the vibrating objects. Discussion 
of this analysis is illustrated by representative examples from a study of vibration characteristics 
of avionics. 

11.2. Time-average hologram interferometry 

Time-average hologram interferometry is characterized by a single holographic recording 
of an object undergoing a cyclic vibration. With the continuous exposure time long in 
comparison to one period of the vibration, the hologram effectively records an ensemble of 
images corresponding to the time-average of all positions on the vibrating object26,27'32. In a 
classical implementation of TAHI, the two beam off-axis setup, shown in Fig. 11.1, is used to 
produce the time-average holograms. During production of such holograms, the interference 
occurs between the entire ensemble of images, with the images recorded near zero velocity, i. e., 
the maximum displacement, contributing most strongly to the resulting image. As a result, the 
image of the object, seen during reconstruction of the time-average hologram, is overlaid with 
interference fringes of unequal brightness. In fact, these fringes vary according to the square of 
the zero-order Bessel function of the first kind, as discussed in this Chapter 7. 

Time varying displacement, Lt(x, y,z, t), of a vibrating object can be related to temporal 
changes in the fringe-locus function, Q.t(x,y,z,t), constant values of which define fringe loci on 
the surface of the object. Using the holographic setup shown in Fig. 11.1, it was shown26'27 that 
this relationship can be written as 

at(x,y,z,t) = K(x,y,z)»L,(x,y,z,t)   , (11.1) 

where t is the time and K(x, y,z) is the sensitivity vector defined as the difference between the 
observation and illumination vectors, K2(x,y,z) and Kj(x,y,z), respectively, with x, y, and z 
representing the Cartesian coordinates characterizing the holographic setup. The time varying 
light field propagating from the vibrating object, along the direction specified by the vector K2, 
interferes with a reference field to produce a spatial distribution of image irradiance, Iim{x,y,z), 
which is proportional to the square of the zero-order Bessel function of the first kind of the 
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argument Clt(x,y,z, t), with the proportionality factor being the amplitude squared of the object 
field, A2

0(x,y,z), i.e., 

Iim(x,y,z) =Al(x,y,z)Jl[Qt(x,y,z,t)]   . (11.2) 

Equation 11.2 shows that the image obtained during reconstruction of the time-average 
hologram is modulated by a system of fringes of unequal brightness described by the square of 
the zero-order Bessel function of the first kind. Thus, for nontrivial values of A0, centers of the 
dark fringes will locate at those points on the surface of the object where J0(Q-t) equals zero. 

|LPS2 

VIBRATING \ 
CANTILEVER* 

PLATE 

PS1 

LASER 

BS 

7M1 

Fig. 11.1. Opto-mechanical configuration of the EOH system: BS is the beamsplitter, 
Ml and M2 are the mirrors, PS1 and PS2 are the phase steppers, SEI and SE2 
are the spatial filter beam expander assemblies, BR is the object beam rotator, 

SI is the speckle interferometer, and Kj and K2 are the directions of object 
illumination and observation, respectively. 

In the case of the out-of-plane (transverse) vibrations of the object, i. e., when motion of 
the object is in the direction parallel to the z-axis, Fig. 11.1, the vibration amplitude, Lh, can be 
shown26'27 to be 

Lt = 2%(K2z-Klz) 
\Qt\ (11.3) 
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In Eq. 11.3, Ltz is the z-component of the displacement vector, X is the wavelength of the laser 
light used to produce the holograms, K\z and K2z are the components of the illumination and 
observation unit vectors defining directions of Ki and K2, respectively, and \Q.t\ is the 
magnitude of the time varying fringe-locus function. 

In order to evaluate Eq. 11.3, the wavelength of the laser light must be known, the 
illumination and the observation geometry must be known in terms of the components of the unit 
illumination and observation vectors, and the spatial distribution of the fringe-locus function 
must also be known. The wavelength of the laser light is usually very well known for the 
specific type of the laser being used. The illumination and the observation vectors are computed 
based on the measurements of x, y, and z coordinates of the position vectors specifying locations 
of the point source of the illumination, the point(s) of interest on the object, and the point along 
the optical axis of the viewing system33,34. Finally, the spatial distribution of Q, is determined 
directly from the holograms and, for the case of TAHI by means of EOH, this determination is 
the subject of Section 11.3; more detailed discussion can be found in Section 8.2.2. 

11.3. Electro-optic holography 

Unlike traditional forms of holographic interferometry, EOH does not use a photographic 
medium to record the fringe patterns. Rather, a CCD camera is used to convert the light intensity 
patterns into a digital bit map, making this method capable of producing quantitative data in 
nearly real-time. That is, in the EOH method, the irradiances produced by mutual interference of 
the object and the reference fields are recorded electronically by the CCD camera28,29. Processing 
of this interferometric information and display of the experimental results are carried out 
concomitantly with the measurements of irradiation. In order to achieve this, the EOH method 
relies on electronic acquisition, processing, and display of optical interference information, and 
allows automated processing of fringes of objects subjected to static and dynamic loads35,36. 

In the following sections, principles of the EOH, as they apply to vibrations, are outlined 
and their implementation to the study of the vibration characteristics of avionics is presented. In 
order to facilitate development of the governing equations, this presentation considers 
time-average recording of sinusoidally vibrating objects. 

11.3.1. Quantitative analysis of electro-optic holograms 

In the EOH, the holographic process is carried out by recording sequential frames of 
images of an object as it vibrates. Typically, four sequential frames are recorded, with a finite 
phase step, imposed on the reference beam, between each frame. It should be noted that the 
number of the sequentially recorded frames is equal to the number of unknowns in Eq. 11.4 
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which describes irradiance distribution of a typical frame recorded in the EOH system. For the 
case of a sinusoidally vibrating object, the irradiance distribution for the n-th sequential frame, i. 
e., Itn(x,y), at the detector array of the CCD camera in the EOH system, can be represented29,37 by 

Itn(x,y) = Io(x,y)+Ir(x,y) +2A0(x,y)Ar(x,y)cos[A(p(x,y) +AQn)J0[Qt(x,y,t))   .        (11.4) 

In Eq. 11.4, x and y identify the coordinates of the pixels in the CCD array, t indicates the time, 
I0 and /rdenote the irradiances of the object and reference fields, whose amplitudes are 
A0 and Ar, respectively, Acp is the phase difference between the two fields, A0„ is the n-th finite 
phase step - in this study, the phase step equals 90° and is introduced between the sequential 
frames, J0 is the zero-order Bessel function of the first kind, and Qt is the time dependent 
fringe-locus function defining loci on the surface of a vibrating object. 

It was shown29 that, for any set of four sequentially recorded frames, the sum of the squares 
of the differences between pairs of interlaced frames is related to the square of the J0 function 
whose argument is Qt, i- e., 

(Itl-It3)
2 + (Ih-Iu)2 = l6A2

0A
2

rJ
2o(nt)   , (11-5) 

where the Cartesian coordinates were omitted for simplification. 

Quantitative interpretation of the electronically recorded holograms of the vibrating objects 
depends on determination of Qr, from Eq. 11.5. This determination can be done by optical 
shifting of the J0 fringes. This shifting is achieved by modulating the phase of either the object 
or the reference beams sinusoidally by addition of a phase bias, B, to the argument of the Bessel 
function. If the phase of the sinusoidal beam modulation is adjusted to coincide with that of the 
object vibration, the phasor becomes a simple additive term within the argument of the Bessel 
function, which can be expressed as29 

(Ih-Ih)2 + (It2-Iu)2 = 16A2
0A

2
rJ

2o(nt-B)   . (11.6) 

In this approach, the nearly periodic nature of the Jl(Qt - B) function is modeled as cos2(fi - E) 
function, where Q. represents the fringe-locus function describing the cosinusoidal fringes 
observed during the reconstruction of a double-exposure hologram, and is utilized to obtain an 
approximate solution for Q.t, based on the three irradiance distributions of the type given by Eq. 
11.6, corresponding to the zero, the positive, and the negative phase bias shifts, respectively. 
This approximate solution, Q.tappmx,i. e., 

Q.,      = - tan-1 l-cos(25) J2
0(Qt + B)-J2(Qt-B) 

sin(25)   J 2J2(Qt) -J
2(Qt-B)-J2

0(Clt + B)\ 
(11.7) 
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differs from the correct value of the argument Q.t of the J0 function because of inequality 
between the J2

0 and the cos2 functions, and can be expressed as 

ß»wm = Ö» + E   , (11.8) 

where 8 is the error representing this difference. This error is computed for a range of interest in 
the values of Qr, subject to the specific values of B, to create a lookup table. The lookup table is 
used to correct the values of 0.tapprox computed from Eq. 11.7. Once correct values of £lt are 
determined, they can be used to compute the displacement using, e. g., Eq. 11.3. 

The interferometric information necessary to solve Eq. 11.7 is recorded electronically by 
the EOH system, at the rate of 30 frames per second. The system processes this information in a 
pipeline fashion. Currently, this processing yields the results at up to 512x480 pixels per frame. 

11.3.2. Description of the EOH system 

A typical opto-mechanical configuration of the EOH system is shown in Fig. 11.1. In this 
system, the laser output is divided into two beams by means of a variable beamsplitter, BS. One 
of these beams is directed by a fixed mirror Ml, and a phase stepper controlled (i. e., movable) 
mirror, PS1, and is shaped by the spatial filter beam expander assembly, SEI, to illuminate the 
object uniformly; PS 1 can be driven at the same frequency as the object excitation to provide 
bias modulation necessary for quantitative interpretation of holograms of vibrating objects, as 
discussed in Section 11.3.1. The beam rotator, BR, located between PS1 and the object, is used 
to rotate the object illumination to facilitate speckle averaging. The direction of the object 
illumination is characterized by the vector Ki, while the object observation is defined by the 
vector K2. The other beam, steered by M2 and PS2 and spatially filtered and expanded by SE2, 
is directed toward the reference input of the speckle interferometer, SI. In this arrangement, PS2 
introduces 90° phase steps between the consecutive frames. 

The speckle interferometer combines the object beam with the reference beam and directs 
them collinearly toward the detector array of the CCD camera. The camera detects the 
interference pattern and sends it to the pipeline processor. The sequential frames are processed 
to determine quantitative information on the object displacements and/or deformations. All 
computations are done in a pipeline processor which operates under control of a host computer. 
The host computer also controls excitation of the object, coordinates it with the bias modulation 
imposed on the object beam, and keeps track of the 90° phase steps between the sequential 
frames. 

By operating on each input frame and its three predecessors, the pipeline processor 
produces a hologram, and this hologram is viewed concomitantly on the TV monitor. Such 
holograms are produced for the zero, as well as the positive, and the negative bias modulations, 
for each resonance condition of the object. The resulting three electronic holograms are then 
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processed, by the host computer, to determine spatial distribution of Q,t, which, in turn, leads to 
computation of the displacement vectors. 

11.4. Test samples 

In this study, vibration characteristics of avionic lidded chip modules, surface mounted 
onto multilayer boards, were investigated. More specifically, two test samples were considered. 
These test samples were specially developed to represent typical avionic packages. Test sample 
No. 1 (TS1) consisted of a multilayer board (MLB) with eight identical lidded chip modules 
which were arranged in two rows with four modules per row, Fig. 11.2. Test sample No. 2 (TS2) 
consisted of chip modules of different sizes which were mounted onto another MLB forming an 
assembly shown in Fig. 11.3. 

Fig. 11.2. TS1: a multilayer board with eight identical 
surface mounted chip modules arranged in two 

rows with four modules per row. 

For the measurements, the test samples were fixed at one end in a cantilever configuration, 
to simulate edge connections. Then, they were excited piezoelectrically, one at a time, by 
imposing sinusoidal excitation at the "connector" end. The excitation frequencies ranged from 
zero to approximately 32 kHz. 
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Fig. 11.3. TS2: a multilayer board with surface 
mounted chip modules of different sizes. 

11.5. Representative results and discussion 

Representative results obtained during the study of the TS1 and TS2 are shown in Figs 
11.4 to 11.11. All interferograms displayed in these figures were recorded electronically using 
the EOH system described in Section 11.3. 

In this study, the TS 1 was first examined in a full field of view, Fig. 11.4. Then, a single 
lidded chip module was selected and a more detailed study of vibration characteristics of this 
module was performed, Figs 11.5 to 11.7. 

Based on the full field of view examination of the TS1, it was noticed that, at the lower 
excitation frequencies, all eight modules were exhibiting some response to the excitation as 
evidenced by the fringe patterns formed on the lids, Fig. 11.4a. However, as the excitation 
frequency increased, this was not always the case, Figs 11.4b and 11.4c. Using the full field of 
view results, the most dynamically active module was selected for a more detailed study of its 
vibration characteristics. This module was the third from the left in the lower row, Fig. 11.4. *&• 

Figures 11.5 and 11.6 show a summary of the results of the study of vibration 
characteristics of a single lidded chip module which is typical of those mounted on the TS 1. The 
fringe patterns shown in Fig. 11.5 were recorded using the EOH system described in Section 
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11.3. These fringe patterns correspond to all sequential resonance conditions found in the 
frequency range from zero to 32 kHz, used in this study. Figure 11.6 shows, where applicable, 
the corresponding finite element results for the same module. In general, agreement between the 
FEM and the EOH results is good in terms of predictability of the mode shapes. Also, the 
resonance frequencies, as determined by the two methods, agree to within 2%, Fig. 11.7. 
However, for the range of the frequencies used in this study, two resonance conditions detected 
using the EOH method, Figs 11.5g and 11.5h, were not predicted by the FEM model. In the 
follow up study, the FEM model will be «examined and an attempt will be made to determine 
the cause(s) of this discrepancy between it and the EOH results. 

(a) 

(b) 

(c) 

Fig. 11.4. Full field of view EOH images of the TS1 vibrating 
(a) 6,720 Hz, (b) 13.685 Hz, and (c) 20,01 J Hz. 
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fa) (b) 

'w&&eEtfmL&s.4S^*84s& 

Fig. 11.5. Summary of the EOH images of a single lidded chip module of the TS1 vibrating at 
resonance frequencies of: (a) 6,720 Hz. (b) 13,685 Hz, (c) 14,006 Hz, (d) 20,011 Hz. 

(e) 24,600 Hz, (f) 24,980 Hz, (g) 26,000 Hz, (h) 28, 990 Hz, and (i) 31,005 Hz. 
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Fig. 11.6. Summary of the FEM results, equivalent to the results shown in Fig. 11.5, 
for a single lidded chip module of the TS1 vibrating at resonance frequencies of: (a) 
6,752 Hz, (b) 13,749 Hz, (c) 13,749 Hz, (d) 20,209 Hz, (e) 24,600 Hz, (f) 24,722 Hz, 

(g) not determined, (h) not determined, and (i) 30,724 Hz. 
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Fig. 11.7. Summary of the measured frequencies for TS1: symbols indicate 
the actual correlation between the FEM and the EOH results while 

the line indicates the ideal correlation. 

Figures 11.8 to 11.11 show representative results for the TS2. These results indicate that at 
lower resonance frequencies (below 148 Hz), the TS2 behaves as a cantilever plate without 
noticeable influence of the surface mounted modules on its mode shapes, Fig. 11.8. That is, the 
modules neither appear to affect the mode shapes of the multilayer board nor they themselves 
show any activity that indicates their presence on the TS2. However, as the excitation frequency 
increases (above 680 Hz), so does the vivid display of the presence of the modules, Figs 11.9 and 
11.10. Most pronounced is the presence of the largest, centrally located module. 

Figure 11.9 shows that although this module follows the mode shape of the entire TS2, Fig. 
11.9a, a close up of the module and the MLB in its vicinity clearly indicates discontinuity 
between the fringe pattern on the module and the fringe pattern on the MLB. For such a 
discontinuity to appear, leads attaching the module to the MLB must be deformed in response to 
the load acting on the TS2, indicating a rigid-body rather than elastic response of the module. In 
fact, compliant leads should be designed in such a way that they could reliably carry cyclic 
operating loads during the expected life of the module12. Figure 11.10 shows that as the 
excitation frequency increases from 4,690 Hz to 9,330 Hz, the lid on the central module goes 
from vibration at its first resonance mode, Fig. 11.10a, via no response at the TS2 resonance 
frequency of 6,890 Hz, Fig. 11.10b, to vibration at its second resonance frequency of 9,330 Hz, 
Fig. 11.1 Oc. Because of distinct differences in the designs of the modules of the TS 1 and the 
central module of the TS2, their resonance frequencies are significantly different although the 
mode shapes are similar. 
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Fig. 11.8. Full field of view EOH images of the TS2 vibrating at: 
(a) 18.7 Hz, (b) 39.7 Hz, (c) 117.8 Hz, and (d) 148,0 Hz. 

II -13 



i- .1 

,■  -' ■   ■ 

Fig. 11.9. EOH images of the TS2 vibrating at 682 Hz: (a) full field of view, and 
(b) a close up of the central module and its vicinity. 

Fig. 11.10. Full field of view EÖH images of the TS2 vibrating at: 
(a) 4,690 Hz, (b) 6,890 Hz, and (c) 9,330 Hz. 
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(a) (b) 

(c) (d) (e) 

Fig. 11.11. EOH and FEM study of vibration characteristics of the TS2: (a) and (b) represent 
EOH images recorded at the excitation frequency of 4,830 Hz and at amplitudes lower than 

that corresponding to Fig. 11.10a, (c) and (d) show equivalent FEM mode shapes 
determined at 4,809 Hz, and (e) wire frame representation of 

the fundamental mode shape. 

Figures 11.11a and 11.11b display a close up of the central module of the TS2 vibrating at 
its fundamental resonance frequency of 4,830 Hz, at amplitudes lower than that used to generate 
the fringe pattern of Fig. 11.10a, vividly showing responsiveness of the module to a change in 
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the level of the excitation energy. Figure 11.11b clearly shows that at the excitation condition 
used to generate its fringe pattern there is no apparent activity in the vicinity of the module. 
Therefore, in order to perform an FEM simulation of the vibration characteristics of the module, 
development of the corresponding model can be significantly simplified by considering only the 
module and its immediate vicinity rather than the entire TS2. This is possible by setting the 
boundary conditions for the MLB in the vicinity of the module to null values as indicated by the 
EOH image. The FEM simulation of the vibration characteristics of the central module of the 
TS2, subject to the input from the EOH images, resulted in determination of the resonance 
frequency of 4,809 Hz which correlated within 0.4% with the experimentally determined value of 
4,830 Hz. Also, the FEM determined mode shapes, Figs 11.11c and 11.11 d, correlated well with 
the corresponding EOH results of Figs 11.11a and 11.11b, respectively. A wire frame 
representation of the fundamental mode shape of the central section of the module, equivalent to 
Figs 11.11b and 11.1 Id, is shown in Fig. 11.1 le. 

11.6. Conclusions and recommendations 

In this paper, fundamentals of the TAHI are presented and principles of EOH are reviewed 
with emphasis on the quantitative study of vibration characteristics of avionics. The quantitative 
results are illustrated by representative examples from a study of vibration characteristics of two 
test samples: TS1, consisting of an MLB with eight identical lidded chip modules which were 
surface mounted in two rows with four modules per row, and TS2, consisting of chip modules of 
different sizes which were mounted onto another MLB to form an assembly representing typical 
avionic packages. 

Using the EOH, the results are obtained in an automated manner. The interferometric 
information is recorded electronically at the rate of 30 frames per second, it is processed in a 
pipeline fashion, and produces results which have very high spatial density, currently at up to 
512x480, or approximately quarter of a million pixels per frame. 

The representative results show that the EOH system provides an effective way for 
recording of the time-average holograms of the vibrating avionics. Using these holograms, eight 
resonance conditions were identified within the frequency range from zero to 32 kHz, for the 
TS1. All, except two, of these resonance conditions were predicted by the FEM model used. 
The correlation between the FEM and the EOH resonance frequencies was within 2% of each 
other. Investigation of the TS2 vividly revealed the response characteristics of the avionics to 
various excitation conditions. These results show that at low frequencies the sample behaves as a 
cantilever plate without any distinctive indication of the presence of the surface mounted 
modules. However, as the excitation frequency increases so does the display of the presence of 
the modules. Initially, the modules undergo a rigid-body response. Then, as the excitation 
frequency increases, they begin to respond elastically exhibiting mode shapes characteristic of a 
particular design of the avionics subject to the specific boundary conditions and other input 
parameters. 
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The ongoing work on combining the methods of hologram interferometry with the finite 
element methods will lead to a development of new design procedures for avionics. Such hybrid 
procedures, possessing both experimental and computational capabilities will, in turn, lead to the 
next generation of tools that will enhance the design and optimization of critical components and 
structures used in the development of reliable and durable modern avionic packages. 

11.7. References 

11.1. J. Soovere, B. V. Dandawate, and G. A. Garfinkel, Vibration stress analysis of avionics, 
AFWAL-TR-87-3023, 1987. 

11.2. Environmental test methods and engineering guidelines, MIL-STD-810E, 1989. 

11.3. Reliability testing for engineering development, qualification, and production, 
MIL-STD-781D, 1986. 

11.4. R. D. Mindlin, "Dynamics of package cushioning," Bell Syst. Tech. J., Vol. 24, 
pp.353-461, 1945. 

11.5. F. T. Flaherty, Jr., "Dynamics of structures," in Physical design of electronic systems, 
Vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1971. 

11.6. D. S. Steinberg, Vibration analysis for electronic equipment, Wiley, New York, 1973. 

11.7. J. M. Kallis, K. L. Wong, I. Quzt, L. B. Duncan, K. S. Hill, B. F. Rothschild, D. W. 
Beuchler, and D. A., Evensen, Latent defect and life model data, AFWAL-TR-86-3012, 
1986. 

11.8. D. S. Steinberg, "Tools available for implementing AVIP," 9th Annual IEEE/AESS Dayton 
Chapter Symp., Dayton, OH, 1988. 

11.9. A. Dasgupta, D. Baker, and M. Pecht, "Reliability prediction of electronic packages," 
J. IES, pp. 36-45, 1990. 

11.10. D. R. Williams, D. L. Davidson, and J. Lankford," Fatigue-crack-tip plastic strains by 
the stereoimaging technique," Exp. Mech., Vol. 20, pp. 134-139, 1980. 

11.11. C. A. Keely, "Solder joint inspection using laser doppler vibrometry," Hewlett-Packard 
7., pp. 81-85, 1989. 

11-17 



11.12. R. J. Pryputniewicz, "Heterodyne holography applications in studies of small 
components," Opt. Engrg., Vol. 24, pp. 849-854, 1985. 

11.13. R. J. Pryputniewicz, "Quantitative electro-optic holography study of dynamics of 
electronic components," in T. R. Hsu, A. Bar-Cohen, and W. Nakayama, eds, Advances 
in electronic packaging, EEP-Vol. 10-2, Am. Soc. Mech. Eng., New York, 
pp. 1297-1306, 1995. 

11.14. W. Bhagat, "Durability life test for avionics/electronics," Proc. of the IES 38th Annual 
Technical Mtg., Las Vegas, NV, Vol. 2, pp. 174-180, 1987. 

11.15. J. Soovere, B. V. Dandawante, G. A., Garfinkel, N. Isikbay, and D. S. Steinberg, 
"Vibration reliability life model for avionics," AFWAL-TR-87-3048, 1987. 

11.16. J. Kallis, Reliability assessment of wafer scale integration using finite element analysis, 
RL-TR-912-251, 1991. 

11.17. D. A. Followell, S. L. Liguore, R. Perez, and W. D. Yates, Computer aided assessment of 
reliability using finite element methods, RL-TR-91-155, 1991. 

11.18. K. J. Bathe, Finite element procedures in engineering analysis, Prentice-Hall, 
Englewood Cliffs, NJ, 1982. 

11.19. H. Kardestuncer, Editor-in-Chief, Finite element handbook, McGraw-Hill, New York, 
1987. 

11.20. W. Weaver, Jr., and P. R. Johnson, Structural dynamics by finite elements, Prentice-Hall, 
Englewood Cliffs, NJ, 1987. 

11.21. T. J. R. Hughes, The finite element method: linear static and dynamic finite element 
analysis, Prentice-Hall, Englewood Cliffs, NJ, 1987. 

11.22. O. C. Zienkiewicz and R. L. Taylor, The finite element method: basic formulations and 
linear problems, Vol. 1, McGraw-Hill, New York, 1989. 

11.23. O. C. Zienkiewicz and R. L. Taylor, The finite element method: solid and fluid 
mechanics, dynamics, and nonlinearity, Vol. 2, McGraw-Hill, New York, 1991. 

11.24. R. J. Pryputniewicz, "A hybrid approach to deformation analysis," Proc. SPIE, 
Vol. 2342, pp. 282-296, 1994. 

11.25. A. H. Burkhard and C. E. Leak, "Durability analysis using fracture mechanics for 
avionics integrity," J. IES, pp. 26-32, 1992. 

11- 18 



11.26. R. J. Pryputniewicz, "Time-average holography in vibration analysis," Opt. Engrg., 
Vol. 24, pp. 843-848, 1985. 

11.27. R. J. Pryputniewicz, "Quantitative interpretation of time-average holograms in vibration 
analysis," in O. D. D. Soares, ed., Optical metrology, NATO ASI Series E: Applied 
Sciences - No. 131, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 
pp. 296-316, 1987. 

11.28. K. A. Stetson and W. R. Brohinsky, "Fringe-shifting technique for numerical analysis of 
time-average holograms of vibrating objects," J. Opt. Soc. Am. -A, Vol. 5, 
pp. 1472-1476, 1988. 

11.29. R. J. Pryputniewicz and K. A. Stetson, "Measurement of vibration patterns using 
electro-optic holography," Proc. SPIE, Vol. 1162, pp. 456-467, 1989. 

11.30. S. Ellingsrud and O. J. L0kberg, "Analysis of high frequency vibrations using 
TV-holography and digital image processing," Proc. SPIE, Vol. 1162, pp. 402-410, 
1989. 

11.31. R. J. Pryputniewicz, "Applications of electro-optic holography in vibration studies," 
Proc. Spring Conf. on Experimental Mechanics, Soc. for Exp. Mech., Bethel, CT, 
pp. 912-919, 1991. 

11.32. C. M. Vest, Holographic interferometry, Wiley, New York, 1979. 

11.33. R. J. Pryputniewicz, "Holographic and finite element studies of vibrating beams," Proc. 
SPIE, Vol. 599, pp. 54-62, 1985. 

11.34. R. J. Pryputniewicz, "Quantitative determination of displacements and strains from 
holograms," Ch. 3 in Rastogi, P. K., ed., Holographic interferometry, Springer-Verlag, 
Berlin, pp. 33-72, 1994. 

11.35. K. Oh and R. J. Pryputniewicz, "Application of electro-optic holography in the study of 
cantilever plate vibration with concentrated masses," in Stetson, K. A., and 
Pryputniewicz, R. J., eds, Hologram interferometry and speckle metrology, Soc. for Exp. 
Mech., Bethel, CT, pp. 245-253, 1990. 

11.36. R. J. Pryputniewicz, "Static and dynamics measurements using electro-optic 
holography," Proc. SPIE, Vol. 1554B, pp. 790-798, 1991. 

11.37. R J. Pryputniewicz, "Electro-optic holography," in Trolinger, J. D., ed., Critical reviews 
of optical science and technology, SPIE, Vol. CR-46, pp. 148-174, 1993. 

11-19 



12. HYBRID, EOH AND FEM, STUDY AND OPTIMIZATION 
OF A CANTILEVER PLATE DYNAMICS 

In engineering design it is always necessary to use materials and resources in the most 
efficient and effective way, which is achieved by optimization'. Optimization of structures is 
usually performed in order to obtain the shape or the layout of the structure of interest that 
minimizes/maximizes a specific variable of interest, which is known as the objective function. 
The objective function could be weight, displacement, stress, strain, or a specific natural 
frequency of interest. Frequently, the objective function is limited to physical constrains such as 
a specific allowed displacement, stress, strain, weight, or natural frequency which are referred to 
as constraints. It is stressed that the above listed parameters are not the only ones used in the 
process of optimization which, if needed, can also consider such phenomena as heat transfer, 
fluid flow, electromagnetism, piezoelectricity, etc. Design variables are the parameters that can 
be changed in order to fulfill the optimization purpose2. 

12.1. Analytical considerations 

Optimization of structures is usually performed in order to obtain the shape or the layout 
of a structure of interest that makes the most efficient use of materials and resources and that is 
most capable of meeting the design criteria set by the engineer. 

Structural optimization is performed by a combined use of different computational 
techniques. These techniques include mathematical programming methods, that provide 
procedures for obtaining optimal conditions, and methods such as finite differences, finite 
elements, and boundary elements, for evaluation of the response of a structure at different stages 
of the optimization process. 

12.1.1. Terminology 

Design optimization can be defined as an iterative redesign process that attempts to 
minimize or maximize a specific measure of the response of a structure (objective function) 
subjected to limits or constraints on the response by using a rational mathematical approach to 
yield improved designs. Design variables are the parameters that can be changed during the 
optimization process. So, in order to perform optimization of a structure it is necessary to 
identify a specific objective function and the design variables and constraints. In this chapter the 
objective function is the dynamic response of a structure having geometric constraints. The 
objective function is evaluated using modal analyses and is minimized/maximized using 
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mathematical programming techniques that are capable of taking the design constraints into 
account. 

12.1.2. Mathematical programming methods 

The main idea of design optimization presented in this chapter relies on finding a 
mathematical relationship between an arbitrary objective function, constraints, and the design 
variables. Such relation is not known in advance. An optimization program makes use of the 
existing design set that is available out of the initial analyses in order to estimate these 
approximate mathematical functions using regression analysis procedures. As optimization 
progresses, new design sets are used to obtain a better approximation. It is this approximation 
that is minimized/maximized rather than the actual objective function and constraints. Linear, 
quadratic, cubic, and quadratic cross terms can be used in least squares regression 
approximations. The general steps for an optimization process are as follows3: 

1) develop analyses in order to find an initial approximation for the objective function and 
constraints, 

2) optimization algorithm, 
a ) form approximations for the objective function and constraints based on 

regression analysis, 
b ) find the gradient of the objective function and constraints with respect to the 

design variables, 
c) use a feasible directions algorithm to determine a new set of design variables, 
d ) build the computational model in terms of these new design variables and totally 

remesh and reapply boundary conditions to the model, 
e ) perform new analysis, 
f) check for convergence. This step is needed when the objective function does not 

improve significantly. If converge is not obtained it is necessary to either repeat 
steps (a) to (f) or to terminate the algorithm. 

3) the resultant geometry is an improved design. 

12.1.3. Modal analysis 

Modal analysis is of particular interest because the optimization process considered in 
this chapter requires minimization/maximization of specific natural frequencies of a plate. 
Considering excitation of a structure by a harmonic force the optimization process requires 
solution of a forced excitation problem. The mathematical solution of this problem indicates that 
this type of excitation can produce resonance of the structure when the frequency of the forcing 
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function is equal to any natural frequency of the structure. This indicates that the solution of a 
free vibrations problem is sufficient for calculating the natural frequencies of a structure. 

Consider an undamped free vibrations problem and a discretization of the domain of the 
structure using the finite element approximation for representing the deformation, v,, of the 
structure, i. e., 

yt=LN$   , (12.1) 

where N'j is the j-th shape function and ßj are the nodal coefficients. Then, it is possible to 
write 

[M1{Y} + [K\{Y} = {0}   , (12.2) 

where {Y} is the deformation vector, [M] is the mass matrix, and [K] is the stiffness matrix. For 
the free vibrations of the undamped structure, we seek the solution of Eq. 12.2 in the form 

yr=a,sin(atf-a)   ,  i=l,2,...n   , (12.3) 

or in a vector form 

{7} = {a}sin(cor-a)   , (12.4) 

where a, is the amplitude of motion of the i-th coordinate, n is the number of degrees of 
freedom, CD is the circular frequency of free vibration, t is the time, and a is the phase angle. 
Substitution of Eq. 12.4 into Eq. 12.2 gives 

-(ü2[M\{a}sm((üt-a) + [K\{a}sm(o3t-ä) = {0}   , (12.5) 

which yields 

\[K]-®2[M]\{a} = 0   . (12.6) 

The formulation of Eq. 12.6 yields an eigenvalue problem. The nontrivial solution of Eq. 12.6 
requires that the determinant of the matrix factor of {a} be equal to zero, i. e., 

\[K]-G)2[M\\=0   . (12.7) 

In general, Eq. 12.7 results in a polynomial equation of degree n in co2 which should be 
satisfied for n values of co2. This polynomial equation is called the characteristic equation of the 
system. For each value of CO2 satisfying the characteristic equation it is possible to solve Eq. 12.6 
forai,a2,... an in terms of arbitrary constants. In general, for a large number of degrees of 
freedom it is not possible to solve the polynomial equation in a direct form, so numerical 
methods are utilized for solving Eq. 12.7 in an iterative fashion. This type of iterative solution is 
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compatible with the finite element approach since forming of the stiffness and mass matrices is 
automatic. Therefore, different iterative eigenvalue solvers, such as the Lanczos or subspace 
iteration methods, can be utilized. The solution of the eigenvalue problem provides information 
on natural frequencies and mode shapes of the structure4,5. 

12.2. Description of the optimization procedure 

Optimization of structures can be entirely performed using computational methods. In 
addition, these methods can be utilized for finding sensitivities of the objective function with 
respect to the design variables because it is relatively easy to change characteristics of a 
computational model and to take into account different effects. However, optimization studies 
may lack any significance if actual boundary conditions, geometry, and/or material properties are 
not modeled properly. The information necessary to properly model a structure can be obtained 
by performing experiments. 

Experimental methods are very effective tools for testing of components since a correct 
experimental procedure takes into account the actual boundary conditions, geometry, and 
material properties of the component being tested. However, experiments alone are not sufficient 
to optimize a structure because it is impractical to experimentally find the behavior of the 
objective function under different values of the design variables. An effective approach to 
optimization of structures is to combine the computational and experimental methodologies since 
by complementing each other it is possible to take advantage of the unique features of each 
methodology. 

12.2.1. Optimization procedure 

The optimization studies presented in this chapter consist of a combined computational 
and experimental approach1, Fig. 12.1. 

According to Fig. 12.1, computational analyses are performed on the initial design in 
order to obtain the modal response of the structure before the optimization is performed and its 
results are compared with the modal response obtained from the holographic interferometry 
studies of an equivalent initial design model. The comparisons between the computational and 
the experimental results are based on the eigenvalues/frequencies and eigenvectors/interference 
patterns of the computational and time-average speckle pattern interferometry modal analyses 
displayed in real-time. When discrepancies between computational and experimental results are 
encountered it is necessary to verify both the parameters of the computational model and the 
experimental conditions. The verifications include boundary conditions, material properties, 
geometric accuracy, and mechanical and optical setups. The results of these comparisons 
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provide information on the accuracy of the computational analyses with respect to modeling of 
the experimental behavior of the structure. When an acceptable degree of accuracy is obtained 
the computational model is utilized for performing sensitivity analyses of the objective function 
with respect to the specified design variables as well as shape optimization of the initial design. 
The geometry obtained from the shape optimization analyses is then used to manufacture a 
prototype which is experimentally tested in order to obtain computational and experimental 
comparisons. 

Computational (■»- 

Design of 
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Fig. 12.1. Flowchart of the optimization procedure utilized 
in the studies presented in this chapter. 
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12.2.2. Description of the computational model 

The computational model utilized for performing the modal analyses and optimization is 
based on the finite element model (FEM). The input parameters required for the analyses consist 
of an accurate geometrical representation, domain discretization, boundary conditions, and 
material properties. Each one of these parameters has to be properly selected in order to obtain a 
correct modeling of both the modal behavior of the domain and the shape optimization analyses. 
An important factor is the use of high order polynomial elements since theses elements have 
good convergence properties and higher accuracy than other types of elements4"6. 

12.2.3. Description of the experimental model 

The electro-optic holography (EOH) system was utilized to performing the experimental 
modal analyses presented in this chapter. Figure 12.2 shows an optical configuration used in this 
study. In this system, the laser output is divided into two separate beams by means of a 
beamsplitter BS. One of the beams is directed towards a beam expander BE to illuminate the 
object OB uniformly. This beam, modulated by an interaction with an object is transmitted by 
the object imaging lens IL to the object input of the speckle interferometer SI. The other beam is 
directed towards a microscope objective MO and then to a fiber-optic probe that is connected to 
the reference input of SI.   The object and reference beams are combined by the SI which is 
capable of sending the combined signal to a CCD camera. The output of the camera is directed 
to a pipeline image processor computer which is capable of processing images at a high rate as 
well as controlling the phase stepper PS1 in order to introduce 90° phase steps between 
consecutive captured frames7'8. 

Fig. 12.2. Optical configuration of the EOH system used in the optimization 
study: OB is the object under investigation, SI is the speckle interferometer, BE is 
the beam expander, BS is the beamsplitter, MO is the microscope objective, PS1 
and PS2 are the piezoelectric phase steppers, SI and S2 are the beam shutters, IL 

is the object imaging lens, and SH is the piezoelectric shaker. 

12-6 



In order to perform the experimental modal analyses, the structure of interest is mounted 
in a fixture that is excited by a piezoelectric shaker SH which, in turn, is driven by a frequency 
generator. The EOH system is capable of providing real-time speckle interferences when the 
excitation frequency is modulated. This allows determination of the natural frequencies and 
mode shapes of the structure being studied. 

12.3. Results and discussions 

The results that are presented in this chapter include the optimization of an Al-2024 
cantilever plate having as objective function the minimization/maximization of its fundamental 
natural frequencies subjected to different constrained design variables. The cases that are 
considered include: 

(a) cantilever plate with a single hole having as design variables the vertical location and 
diameter of the hole, 

(b) cantilever plate with two holes having as design variables the diameters of the holes. 

The procedure presented in Section 12.2 is applied to perform the studies for the two cases listed 
above. 

12.3.1. Cantilever plate with a single hole having as design variables 
the vertical location and diameter of the hole 

Figure 12.3 shows the configuration of the cantilever plate considered. In this figure, D 
and Cy are identified as the constrained design variables that are allowed to vary in a range that 
permits the manufacture of the optimized geometry within limits that do not change the topology 
of the plate. 

Evaluation of the initial configuration is started by performing convergence studies of the 
computational model with respect to the number of elements utilized in the discretized plate. 
These studies are necessary in order to verify the degree of accuracy that is obtained for a specific 
number of elements. The finite element models are designed based on high accuracy quadratic 
elements and assumptions of isotropy and homogeneity of the material properties9. Figure 12.4 
shows a typical finite element model and the convergence behavior of the computational model 
for predicting the value of the first natural frequency of the cantilever plate. 
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W=12.70 mm. 

H=25.40 mm 

Allowed geometric limits: 

D   [2.54, 8.90] mm 
Cy [5.00,20.30] mm 

Cy=12.70 mm 

6.35 mm      Thickness: 0.27 mm 

Fig. 12.3. Configuration of the Al-2024 plate with a single hole considered 
for optimization. The objective function is the minimization/maximization 

of the fundamental natural frequencies of the plate: 
D and Cy are the constrained design variables. 

FREQUENCY, Hz 

320 r 

300 -     ^__^_____-, 

280 

260 

240 

220 

200 

200     300     400      500      600     700      800 
NUMBER OF ELEMENTS 

Fig. 12.4. Typical finite element model and convergence behavior to the first resonance 
frequency with respect to the number of elements utilized for performing 

the computational modal analyses. The plate is fixed at the base. 
Nine noded elements are utilized. 

The EOH studies were performed in parallel with the computational modeling in order to 
verify that the computational and the experimental studies use equivalent models. Table 12.1 
summarizes the computational and experimental results of the first 12 resonance frequencies. As 
it can be observed, good correlation between the computational and the experimental results was 
obtained and, therefore, the computational model can be reliably utilized for performing 
sensitivity and optimization analyses of the plate. 
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Table 12.1. Summary of computational and experimental values of the first 12 resonance 
frequencies of the initial configuration of the cantilever plate with a single hole. 

Mode Frequency, Hz 
Computational      Experimental 

%Diff. * Mode Frequency, Hz 
Computational     Experimental 

%Diff. * 

1 312.12 319.0 -0.022 7 8994.96 8948.0 0.005 
2 1347.27 1300.0 0.036 8 10734.50 11165.0 -0.039 
3 1919.75 1978.0 -0.029 9 12193.00 12285.0 -0.007 
4 4479.15 4360.0 0.027 10 12364.90 
5 5472.95 5650.0 -0.031 11 14017.10 14330.0 -0.022 
6 8433.52 8377.0 0.007 12 16890.40 

%Diff.=(computational-experimental)/experimentaI 

Sensitivity analyses and optimization of the plate for minimization and maximization of 
the objective function are performed on the experimentally validated initial configuration. Figure 
12.5 depicts the results of the sensitivity analyses for the first three fundamental natural 
frequencies with respect to the normalized design variables. The values of the design variables 
are varied within the allowed constrained design space. 

SENSITIVITY OF THE 
FIRST RESONANCE FREQUENCY 

SENSITIVITY OF THE 
SECOND RESONANCE FREQUENCY 

SENSITIVITY OF THE 
THIRD RESONANCE FREQUENCY 

Fig. 12.5. Sensitivity of the first three resonance frequencies with respect to 
normalized design variables D and Cy. W and H are the width and height 

of the plate, respectively. 

Figure 12.6 shows the EOH patterns and the finite element mode shapes obtained for the 
first 5 resonance frequencies, while Table 12.2 summarizes the computational and experimental 
results of the first 12 resonance frequencies for minimization of the objective function. Figure 
12.7 and Table 12.3 show equivalent results but for maximization of the objective function. 

12-9 



"-Vssi 

£i£, 
■~'«W8«M«.««" 

Fig. 12.6. EOH fringe patterns and computational mode shapes of the 
first five resonance frequencies for minimization of the objective function 

of the cantilever plate with a single hole. 
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Fig. 12.7. EOH fringe patterns and computational mode shapes of the 
first five resonance frequencies for maximization of the objective function 

of the cantilever plate with a single hole. 
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Table 12.2. Summary of computational and experimental values of 
the first 12 resonance frequencies of the cantilever plate with a single hole 

optimized for minimization of the objective function. 
Mode Frequency, Hz 

Computational      Experimental 
% Diff. * Mode Frequency, Hz 

Computational     Experimental 
% Diff. * 

1 211.64 211.0 0.003 7 8523.48 8355.0 0.020 
2 1173.14 1103.0 0.064 8 8890.04 8875.0 0.002 
3 1836.79 1831.0 0.003 9 11376.71 10750.0 0.058 
4 4345.17 4202.0 0.034 10 12234.77 12340.0 -0.009 
5 5578.32 5742.0 -0.029 11 14045.00 13210.0 0.063 
6 8502.41 12 17698.43 17840.0 -0.008 

%Diff.=(computational-experimental)/experimentaI 

Table 12.3. Summary of computational and experimental values of 
the first 12 resonance frequencies of the cantilever plate with a single hole 

optimized for maximization of the objective function. 

Mode Frequency, Hz 
Computational      Experimental 

%Diff. * Mode Frequency, Hz 
Computational    Experimental 

%Diff. * 

1 394.93 394.5 0.001 7 7834.96 
2 1389.42 1372.0 0.013 8 11058.06 11325.0 -0.024 
3 1769.67 1785.0 -0.009 9 11676.75 11835.0 -0.013 
4 3795.27 3798.0 -0.0007 10 13279.52 13656.0 -0.028 
5 5048.81 5042.0 0.001 11 13667.07 
6 7790.43 7770.0 0.003 12 16819.19 16787.0 0.002 

*%Diff.=(computational-experimental)/experimental 

12.3.2. Cantilever plate with two holes having as design variables the 
diameters of the holes 

Figure 12.8 depicts the configuration of the cantilever plate considered. In this figure, Dl 
and D2 are identified as the constrained design variables. The same criteria for the limits on the 
design variables and convergence of the computational model, as explained in Section 12.3.2 are 
applied. Figure 12.9 shows a typical finite element model and the convergence behavior of the 
computational model for predicting the value of the first natural frequency of the plate and Table 
12.4 summarizes the corresponding computational and experimental results obtained for the 
initial plate configuration. 
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W-12.70 mm 
Ue &J 

H=25.40 mm D2=3.80 mm 

D 1=3.80 mm 

6.35 mm 
i. 

Allowed geometric limits: 
Dl   [2.54,8.90] mm 
D2   [2.54, 8.90] mm 

19.05 mm 

H—H 6-35 mm Thickness: 0.27mm 

Fig. 12.8. Configuration of the Al-2024 plate with two holes considered 
for optimization. The objective function is the minimization/maximization 

of the fundamental natural frequencies of the plate: 
Dl and D2 are the constrained design variables. 

FREQUENCY, Hz 

320 

200     300      400      500     600      700      800 
NUMBER OF ELEMENTS 

Fig. 12.9. Typical finite element model and convergence behavior to the first resonance 
frequency with respect to the number of elements utilized for performing 

the computational modal analyses. The plate is fixed at the base. 
Nine noded elements are utilized. 

Using the validated model, sensitivity analyses and optimization were performed. The 
results of the sensitivity analyses are presented in Fig. 12.10 where the behavior of the first three 
resonance frequencies with respect to normalized design variables are shown. Figures 12.11 and 
12.12 and Tables 12.5 and 12.6 summarize the results of the optimization studies for the 
minimization and maximization of the objective function, respectively. 
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Table 12.4. Summary of computational and experimental values of the first 12 resonance 
frequencies of the initial configuration of the cantilever plate with two holes. 

Mode Frequency, Hz 
Computational      Experimental 

%Diff. * Mode Frequency, Hz 
Computational     Experimental 

%Diff. * 

1 310.08 Hz 313.3 Hz -0.010 7 8448.76 Hz 
2 1321.44 1289.0 0.025 8 11018.76 11155.0 -0.012 
3 1959.16 1967.0 -0.004 9 11711.33 11835.0 -0.010 
4 4264.66 4220.0 0.011 10 12673.00   

5 5415.18 5440.0 -0.005 11 13966.19 14070.0 -0.007 
6 8357.92 8455.0 -0.011 12 16947.29 17284.0 -0.019 

*%Dirr.=(computational-experimental)/experimental 

SENSmvrTYOFTHE 
FIRST RESONANCE FREQUENCY 

SENSrnVTTYOFTHE 
SECOND RESONANCE FREQUENCY 

SENSITIVITY OF THE 
THIRD RESONANCE FREQUENCY 

Fig. 12.10. Sensitivity of the first three resonance frequencies with respect to the 
normalized design variables Dl and D2, Wis the width of the plate. 

12.4. Conclusions and recommendations 

In this study, a hybrid approach consisting of the finite element method (FEM) and the 
electro-optic holography (EOH) method was used to optimize a cantilever plate with holes in 
order to minimize/maximize specific resonance frequencies. This hybrid approach shows that 
the computational and the experimental methodologies used in this study complement each other 
and can be applied to optimization of mechanical components yielding results in a very fast, 
accurate, and efficient manner. 
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Table 12.5. Summary of computational and experimental values of 
the first 12 resonance frequencies of the cantilever plate with two holes 

optimized for minimization of the objective function. 

Mode Frequency, Hz 
Computational      Experimental 

%Diff. * Mode Frequency, Hz 
Computational     Experimental 

%Diff. * 

1 218.32 Hz 218.30 Hz 0.0001 7 8302.80 Hz 8170.0 Hz 0.016 
2 1139.28 1133.0 0.006 8 8417.12 8460.0 -0.005 
3 1847.94 1883.0 -0.019 9 11016.25 11076.0 -0.005 
4 4277.73 4266.0 0.003 10 12697.44 12986.0 -0.022 
5 5666.00 5948.0 -0.047 11 13822.51 13705.0 0.009 
6 8258.61 12 17782.00 18050.0 -0.015 

^Diff.^computational-experimentaiyexperimental 

Table 12.6. Summary of computational and experimental values of 
the first 12 resonance frequencies of the cantilever plate with two holes 

optimized for maximization of the objective function. 

Mode Frequency, Hz 
Computational      Experimental 

%Diff. * Mode Frequency, Hz 
Computational     Experimental 

%Diff. * 

1 377.17 Hz 372.5 Hz 0.013 7 7846.09 7940.0 -0.012 
2 1346.72 1338.0 0.007 8 10730.0 10670.0 0.006 
3 1745.17 1754.0 -0.005 9 11268.16 11160.0 0.010 
4 3746.51 3770.0 -0.006 10 13191.61 
5 5067.66 5090.0 -0.004 11 13253.0 13420.0 -0.012 
6 7786.51 7800.0 -0.002 12 17066.7 17440.0 -0.021 

N%Diff.=(computationaI-experimental)/experimental 
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Fig. 12.11. EOH fringe patterns and computational mode shapes for the 
first five resonance frequencies for minimization of the objective function 

of the cantilever plate with two holes. 

Fig. 12.12. EOH fringe patterns and computational mode shapes for the 
first five resonance frequencies for the maximization of the objective function 

of the cantilever plate with two holes. 
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13. OVERALL SUMMARY, CONCLUSIONS, AND 
RECOMMENDATIONS 

The objective of this project was to develop and apply, to micro-scale electronic 
assemblies, a quantitative measurement approach using electro-optic holography (EOH) that is 
able to simultaneously measure three-dimensional displacements and deformations under either 
static, quasi-static, or vibration conditions. 

The objective of this project was achieved. The results presented in this report describe 
the EOH system with three cameras, which was developed during this project, the mathematical 
procedures necessary to use the system for electronic recording, processing, and display of 
quantitative results on displacement fields of objects subjected to static, quasi-static, and 
vibration loads, and representative applications of the EOH methodology for avionics durability 
analysis and validation. 

The results presented in this report demonstrate viability of the EOH system for avionics 
durability analysis and validation. 

More specifically, results presented show that the EOH system effectively records high 
quality electronic holograms of objects at near real-time speeds of 30 holograms per second. 

Using the EOH system, developed during this project, results are obtained in a truly 
totally automated manner. The interferometric information is recorded electronically at the rate 
of 30 holograms per second, it is processed in a pipeline fashion, and produces results which 
have very high spatial density - currently at up to 512x480 points per image (frame). These 
results correlate well with the computational (i. e., FEM) predictions of the displacement fields 
of the objects subjected to static and dynamic loads. 

Continued work is needed to merge, within the host computer, the results obtained from 
the EOH system with the computational procedures of the FEM. This will result in a hybrid 
system which will allow totally automated, quantitative approach for avionics durability analysis 
and validation. 

Additionally, during this project, viability of electro-optic shearography for avionics 
durability analysis and validation was investigated. In this part of the project, the electro-optic 
holography (EOH) and electro-optic shearography (EOS) were used side by side to study 
behavior of a cantilever plate under static and dynamic loading conditions. This study examines 
parameters characterizing EOH and EOS methodologies and relates these parameters to the 
equations governing recording and quantitative interpretation of the interferograms. 

The results presented in this report show that the EOH is a very viable method for 
accurate determination of the full field displacements. Comparison of the EOH and the FEM 
results indicates that they correlate to better than 1%. However, because of the EOH's inherently 
invariant and high sensitivity, fringe frequencies become very high rapidly and often obscure 
local deformations which are of interest. 
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The results also show that the EOS is a very viable method for determination of 
derivatives of the displacement fields. The accuracy of this determination depends on the 
magnitude of the shear introduced while recording the interferograms. In this study, shears 
ranging from 3 mm to 25 mm were used. The results show that the difference between the 
shearographic and the theoretical results decreases as the magnitude of the shear decreases, from 
approximately 16% for 25 mm shear to approximately 1% for the 3 mm shear. 

In addition, the results demonstrate the viability of the EOS for studies of objects under 
the condition of resonance. It is particularly interesting to see a side by side comparison of the 
fringe patterns produced electronically while imposing shears in the directions normal to the 
direction of the predominant component of the displacement vector and how they relate to the 
conventional mode shapes obtained by the EOH. 

Work on side by side developments of electronic holography and electronic shearography 
should continue. These methodologies complement each other and together provide information 
that could not be readily obtained in any other way. 

Also, this report presents some of the developments relating to hybridization of hologram 
interferometry and computational methods. This hybrid approach to deformation analysis is a 
part of what we call ACES methodologies, which emphasize the analogy between analytical, 
computational, and experimental methodologies and employ them to obtain solutions that may 
not have been otherwise obtainable, to ease the existing solution procedures, or to attain 
improvements in the results. Use of these methodologies to solution of real problems is 
illustrated with representative examples and shows their viability for avionics durability analysis 
and validation. 

Continued advances on hybridization of experimental, especially optical, methods with 
the computational methods will lead to development of new tools which will facilitate solution of 
problems hampered by lack of knowledge on behavior of new materials, large deformations, 
and/or inherent nonlinearities. 

As a part of this report, fundamentals of the time-average hologram interferometry 
(TAHI) are presented and principles of the EOH are reviewed with emphasis on the quantitative 
study of vibration characteristics of avionics. The quantitative results are illustrated by 
representative examples from a study of vibration characteristics of selected test samples: TS1, 
consisting of an MLB with eight identical lidded chip modules which were surface mounted in 
two rows with four modules per row, and TS2, consisting of chip modules of different sizes 
which were mounted onto another MLB to form an assembly representing typical avionics 
packages. 

The representative results show that the EOH system provides an effective way for 
recording of the time-average holograms of the vibrating avionics. Using these holograms, eight 
resonance conditions were identified within the frequency range from zero to 32 kHz, for the 
TS1. All, except two, of these resonance conditions were predicted by the FEM model used. 
The correlation between the FEM and the EOH resonance frequencies was within 2% of each 
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other. Investigation of the TS2 vividly revealed the response characteristics of the avionics to 
various excitation conditions. These results show that at low frequencies the sample behaves as a 
cantilever plate without any distinctive indication of the presence of the surface mounted 
modules. However, as the excitation frequency increases so does the display of the presence of 
the modules. Initially, the modules undergo a rigid-body response. Then, as the excitation 
frequency increases, they begin to respond elastically exhibiting mode shapes characteristic of a 
particular design of the avionics subject to the specific boundary conditions and other input 
parameters. 

The ongoing work on combining the methods of EOH with the FEM will lead to a 
development of new design procedures for avionics. Such hybrid procedures, possessing both 
experimental and computational capabilities will, in turn, lead to the next generation of tools that 
will enhance the design and optimization of critical components and structures used in the 
development of reliable and durable modern avionics packages. 

Finally, a hybrid approach consisting of the EOH and FEM methodologies was used to 
optimize a cantilever plate with holes in order to minimize/maximize specific resonance 
frequencies. This hybrid approach shows that computational and experimental methodologies 
complement each other and can be applied to optimization of mechanical components yielding 
results in a very fast, accurate, and efficient manner. We believe that such a hybrid, experimental 
and computational, approach to structural analysis, in general, and to avionics durability analysis 
and validation, in particular, will lead to development of new, reliable systems that will be 
economically desirable. 

All in all, the results presented in this report demonstrate viability of the EOH system, 
developed during this project, for avionics durability analysis and validation. These analysis and 
validation provide three-dimensional quantitative results in near-real time at 30 holograms per 
second. 
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Reprinted from: Critical reviews of optical science and technology, SPIE, Bellingham, WA, 
Vol. CR46, pp. 148-174, 1993. 

ELECTRO-OPTIC HOLOGRAPHY 

Ryszard J. Pryputniewicz 

Center for Holographic Studies and Laser Technology 
Department of Mechanical Engineering 

Worcester Polytechnic Institute 
Worcester, MA 01609-2280 

ABSTRACT 

This critical review concentrates on electro-optic holography. First, funda- 
mentals of the electro-optic holography are outlined. Then, mathematical pro- 
cedures for quantitative interpretation of electronic holograms are presented. 
This is followed with a description of a system for implementation of procedures 
for electronic acquisition, storage, processing, and display of optical interfer- 
ence information. This description is illustrated with representative examples 
relating to static and dynamic loading conditions. 

1.  INTRODUCTION 

Today, the demands for safe, economic, and efficient designs of load 
resisting structures are greater than ever before. Satisfaction of these demands 
relies on accurate and precise measurement of displacements and deforma- 
tions of the structures in response to their loads. These loads are varying in 
nature and many design problems must be concerned with; both, static and 
dynamic loading conditions. 

In response to the design demands, a number of methods for measure- 
ments of displacements/deformations of objects undergoing static and dynamic 
loads have been developed1"39, based on the principles of hologram 
interferometry. These methods, in general, require recording of holographic 
interferograms in photosensitive media which need to be processed and then 
must be reconstructed in order to produce the images. Although these meth- 
ods are very functional and have helped to solve many problems, they are 
"slow" because of the post-exposure processing requirements. As such, these 
methods are not usually suited for on-line applications. Recently, however, uti- 
lizing advances in the phase step hologram interferometry, speckle metrology, 
and computer technology, novel methods allowing direct electronic recording of 
holograms and transmission of holographic interferograms by television sys- 
tems for real-time display of interference fringes have been developed40-53 
One of these methods is known as the Electro-Optic Holography (EOH) method 
and is the subject of this review. 
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2.  FUNDAMENTALS OF EOH 

In the EOH method, also known as Electronic Holography, or TV Hologra- 
phy, the interfering beams are combined by a speckle interferometer, which 
produces speckles large enough to be resolved by the TV camera42. The 
output of the TV camera is fed to a system that computes and stores the magni- 
tude and phase, relative to the reference beam, of each picture element in the 
image of the illuminated object. 

The EOH method allows automated processing of fringes of statically and 
dynamically loaded objects48' 51-53  |n tf-,jS method, measurements of irra- 
diances produced by mutual interference of the object and the reference fields 
are made electronically by a CCD camera, Fig. 1. Processing of this 
interferometric information and display of the computational results are carried 
out concomitantly with measurements of irradiation. The EOH method does not 
depend on recording of holograms in conventional media, but rather relies on 
electronic acquisition, processing, and display of optical interference informa- 
tion. 

In the following sections, principles of the EOH method are outlined and 
its implementation to static and dynamic measurements is presented. 

HLPS2 

PS1 

LASER 

BS 

CAMERA 

VM1 

Fig. 1.Optical configuration of the EOH system: BS is the beamsplitter, M1 
and M2 are the mirrors, PS1 and PS2 are the phase steppers, SE1 and SE2 
are the spatial filter beam expander assemblies, BR is the object beam rota- 

tor, SI is the speckle interferometer, and K , and K 2are the directions of 

object illumination and observation. 
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2.1. Configuration of the EOH system 

Optical configuration of the EOH system is shown in Fig. 1. in this system, 
the laser output is divided into two beams by means of a continuously variable 
beamsplitter. One of these beams is directed via a mirror and is shaped by the 
spatial filter beam expander assembly to illuminate the object uniformly. The 
other beam, also spatially filtered and expanded, is directed toward the refer- 
ence input of the speckle interferometer. The speckle interferometer combines 
the object beam with the reference beam and directs them collinearly toward 
the detector array of the CCD camera, Fig. 2. The camera detects the irra- 
diance patters and sends them to the pipeline processor. The sequential 
frames are processed to determine quantitative information on the object's 
displacements and/or deformations. All computations are done in the pipeline 
processor which operates under control of a host computer. 

SPECKLE 
INTERFEROMETER m 

CCD 
CAMERA 

PROCESSOR 

PHASE 
STEPPER 

CONTROLS 

OBJECT 
LOADING 

CONTROLS V 
HOST 

COMPUTER 

TV 
MONITOR 

COMPUTER 
MONITOR 

Fig. 2. Electronic configuration of the EOH system. 

2.2. Modes of operation 

The EOH system is capable of operating in either a viewing mode or a data 
mode. The viewing mode is used for visual examination of the interference pat- 
terns. The data mode is used for quantitative analysis of the electronically 
recorded holographic images. 
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The viewing mode produces an 8-bit image, while the data mode produces 
a 16-bit image. The viewing and data images are produced by lookup tables 
resident in the EOH system. They can be displayed live on the TV monitor and 
can be stored and/or printed at any time. 

The image storage can be of either of the following two types. If the image 
is to be recalled in the future for visual observation, then an 8-bit image is stored 
and occupies approximately one-quarter megabyte of memory. This is image 
storage. If the image is to be processed quantitatively, then the lookup table for 
the data mode is loaded into the operating system and produces a data image 
which is stored as the 16-bit data image and occupies one-half megabyte of 
memory. This is data storage. Each type of the image may be downloaded to 
the host computer's memory at any time. 

3.  QUANTITATIVE INTERPRETATION OF ELECTRONIC HOLOGRAMS 

The EOH system is capable of performing either static or dynamic measu- 
rements5"^, static measurements are implemented using double-exposure 
hologram interferometry method, while dynamic measurements are 
implemented by time-average method. 

3.1. Static measurements 

Static measurements are characterized by recording 'single-exposure' 
holograms of an object at two different states of stress. As a result of interfer- 
ence between a set of two 'single-exposure' holograms, fringes form, if there 
are any optical path differences between the corresponding points on the 
object as recorded in the two holograms. 

In the EOH, this process is carried out by recording sequential frames of 
images of the object, corresponding to the two states of stress. Typically, four 
sequential frames are recorded. These frames are recorded in such a way that 
a finite phase step is imposed on the reference beam between each frame. In 
the following discussion, in order to simplify derivation of equations describing 
the EOH process for static measurements, the object will be initially unstressed. 

The image of an unstressed (i. e., unloaded) object can be described by 
the irradiance distribution for the n-th sequential frame, In(x, y), at the 

detector array of a CCD camera in the EOH system setup, as 

/n(-v-y)=/ü(.v.y)+/r(.v,y) 

- ?.l„(-V.y).-lr(A-.y)cos[Aip(.Y.y) + A0„], ( l ) 
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while the corresponding image of the stressed (i. e., loaded) object can be 

described by the irradiance distribution, /,', (x, y), as 

/n(x,y)=/0(x,y)+/r(x,y) 

+ 2/i0(x,y)/lr(x,y)cos[A<Kx,y) + fi(>,y)+AOJ. (2) 

In Eqs 1 and 2, x-and y identify coordinates of the detectors in the array, 

/ 0 and / r denote irradiances of the object and reference fields, whose ampli- 

tudes are A0 and /^.respectively, Aq> is the phase difference between the 

two fields, A 9 „ is the n-th finite phase step imposed on the reference beam 

between sequential frames recording individual images, and fi is the fringe- 
locus function, constant values of which define fringe loci on the object's sur- 
face. 

Since /and / are measured at known coordinates x-and y, Eqs 1 and 2 
contain four unknowns, that is, irradiances (which are squares of the ampli- 
tudes) of the two fields, the phase differences between these fields, and the 
fringe-locus function. The goal of the analysis is to determine D. because it 
relates directly to displacements and deformations of the object. 

IntheEOH, Aq> is eliminated by recording sequentially four TV frames 
with an introduction of a phase step, equal to a multiple of 90°, between each 
frame. That is, A9 „, appearing in Eqs 1 and 2, takes on the values of 0,90°, 

1 80° and 270°  This process can be represented by two sets of four simulta- 
neous equations corresponding to Eqs 1 and 2, respectively, that is, 

/, = /0+/r + 2.40/lrcos(A<j> + 00). (3) 

/2=/0+/r + 2,V4rcos(Atp + 90°), (4) 

/3 = /0+/f+ 2/I0/lrcos(Aip+ 180°). (5) 

/4 =/«,+ /, + 2/l0/lrcos(Aip + 270°). (6) 

and 

/ , = 10+ /, + 2A0A, cos(Aip + H + 0°) . (7) 

/2 = /0+/r+ 2,40,-lrcos(A<p + n + 900). (H) 

/, = /„+/, + 2.-l0.-l/cos(Aip + n+ 180°). (9) 

A-6 



Optical Inspection and Testing I  153 

14 = l'0 + Ir + 2A0Arcos(Aip + n + 270°) , (10) 

where the arguments O, y) were omitted for simplification. Evaluation of Eqs 

3 to 10 yields: 

/, = /0 + /r + 2/l0/ircosA(p, (11) 

/2 = /0+/r + 2/l0/lrsinAcp, 

/3 = /„+ 1 r-2A0Arcosky, 

I A = /0+/r-2/l0/lrsinA<p 

(12) 

(13) 

(14) 

and 

/i = /0+/r + 2/i;/ircos(A(p + n) (15) 

/2 = /0+/f + 2/l0/lrsin(A(p + n) (16) 

/3 = /0+/r-2/l0/lrcos(Acp + n), (17) 

I4 = />/r-2/l0/lrsin(Atj) + n)I (18) 

It should be noted that systems of equations similar to Eqs 11 to 14 and Eqs 15 
to 18 could be obtained using any value of the phase step, however, use of the 
90° phase step results in the simplest computations. 

Subtracting Eq. 13 from Eq. 11 and Eq. 14 from Eq. 12, for the case of the 
unstressed object, we obtain the following set of two equations: 

and 

(/1-/3) = 4/i0/lrcosA(p. 

U2~ 14) = 4/l0/lrsin Atp. 

(19) 

(20) 

Following the above procedure and subtracting Eq. 17 from Eq. 15 and Eq. 18 
from Eq. 16, we generate a set of two equations for the case of the stressed 
object, that is, 

and 

(/;-/3) = 44ü/lrcos(A(p + n) 

(/2-/J=4/l0/l,siii(Acp + n) 
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Now, addition of Eqs 19 and 21 yields 

(/. -/3) + (/. -/3) = 4/l0/lrcosA(p + 4/i0/lrcos(A(p+n). (23) 

Because object displacements and deformations are small, it can be assumed 

that A 0 = A 0. Therefore, Eq. 23 becomes 

(/,-/3)+ (/",-/a) = 4/!0yir[cosA(p + cos(A<p + n)]. (24) 

Recognizing that cos(Aq> + fi) = cos A cp cos fi- sin Acpsin fi, Eq. 24 can be 

rewritten as 

£, = (/, -/3)
+(/;-/3) 

= 4A0Ar[( 1 + cos H) cos A (p-sin Aipsinfi]. (25) 

In a similar way, addition of Eqs 20 and 22 simplifies to 

= 4/1 „/!,.[( 1 + cosfi)sinAq> + cosAcpsinfi]. (26) 

Finally, addition of the squares of Eqs 25 and 26 yields 

D7\- D\ = (4/l0/lr[(l + cosfi)cosAcp-sin Acpsin fi]}2 

+ {4/l0/lr[( 1 + cosfi)sin Aq> + cos Acpsin fi]}2 . 

which reduces to 

D2 + D\= 16/1' /12[(1 + COSJn)2 + sin2 fi]. 

wherefrom 

£2+D2 = 32/l2/l2(l + cosfi). (27) 

Furthermore, recognizing that (1 + cosfi) = 2cos2(fi/2), Eq. 27 can be 

rewritten as 

,iD2
l + D2

2 = 8A0Arcos^y (28) 
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which represents the static viewing image displayed by the EOH. In Eq. 28, D. 
is the fringe-locus function corresponding to the object's static displacements 
and/or deformations. The fringe-locus function can be determined by process- 
ing the sequential EOH images as described below. 

In order to obtain data from the EOH images, we will again employ Eqs 19 
to 23 and follow the procedure used to derive Eq. 27. The result of this proce- 
dure is 

ö3 = (/l-/3)-(/'.-/3) 

= 4A0Ar[( 1 - cosD)cosAip + sin Acp sin fl], 

= 4/I0/lr[( 1 - cos fl) sin Acp - cos Acp sin fl] , 

and 

Dl*D2
A = '32A2

0A){\ -cosfl) 

(29) 

(30) 

(31 

Subtracting Eq. 31 from Eq. 27 we obtain 

D = (D \ + D\) - (D 3 + D 4) = 32 Al A 2
r{ l + cos H) - 32 AI A r

2( 1 - cos .0). 

or 

D = 64A2
0A

2cosCl 

Starting with Eqs 19 to 22, we can also determine 

A;
!=(/l-/3) + (/2-/,) 

= -l/l„.l,[( 1 + sin D) cos Acp ■+ sin AcpcosD], 

A''2 = (/2-/4)-(/i-/3) 

= 4/l0.l,. [( 1 + sin fl) sin Acp - cos Acp cos D]. 

V3 = (/, -/:,)-(/2-/.',) 

=  I . I„ I, | ( I - sin .Q) cos Acp - sin Acp cos D ] . 
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= 4A0Ar[( 1 -sinf})sinAip + cosA(pcosn], (36) 

N2 + N2
2 = 32A2

0A
2(l+sinn). (37) 

Nl + N2< = 32A2
0A

2
r(l -sinfl). (38) 

and 

A' = (N2 + N\)~ (N\+ N2) = 64/lf/if sin .0.. (39) 

Finally, dividing Eq. 39 by Eq. 32, we obtain 

N _ 64A2
0A

2sinD. 

D ~ 64A2
0A

2cosn' 

from which it follows that 

JN D=tan-'^J. (40) 

It should be noted that n, computed from Eq. 40, is a spatial function that 
depends on coordinates .xand y. Therefore, its values are determined for every 
coordinate pair (.v . y) in the object space. Once the values of n are deter- 
mined, they can be used to compute object displacements and deformations 
using, for example, procedures discussed in references 16, 18, and 23. 

3.2.  Dynamic measurements 

Application of EOH to dynamic measurements is made based on the time- 
average hologram interferometry32. In this section, in order to facilitate devel- 
opment of the equations governing formation of the images, the time-average 
recording of a sinusoidally vibrating object will be considered52. For this case, 
the irradiance distribution for the n - (h sequential frame, /, n, can be repre- 

sented by a relationship similar to those shown in Eqs 1 and 2, that is, 

/,ri = /,o+/r + 2.d,o^rcos(A9, + AejA'/(n,). (41) 

In Eq. 41, the arguments (.v, y) were omitted for simplification, subscript t indi- 
cates time varying parameters, A/ is the characteristic fringe function4 that mod- 
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ulates the interference of the two fields due to the object's motion, n, is the 

fringe-locus function defining fringe loci on the surface of a vibrating object, and 
other parameters are as defined for Eqs 1 and 2. 

Equation 41, like Eqs 1 and 2, has four unknowns: 1,0 and / r, which are 

squares of/I,„ and Ar, respectively, Acp„ and n,. The goal of the analysis is to 

determine .()., because it relates directly to the displacements of the vibrating 

object. 

In order to determine D., from the electronic holograms of a vibrating 

object, four sequential frames are recorded with the phase steps equal to multi- 
ples of 90° imposed on the reference beam between each frame, see also 
Section 3.1. This process can be represented by the following set of four 
simultaneous equations: 

/,, = /,o+/r + 2/l,o.4rcos(Aq), + 00)/V/(fi,). 

/(2=/,o+/r + 2/l,o/lrcos(Acp, + 90°)A.'/(n(). 

/,3 = /,o+/r + 2/l,o^lrcos(Acp,+ l80°)iW(n,), 

/,4 = /,o+/r + 2/i,o/lrcos(Acp, + 270°)/l/(n,). 

(42) 

(43) 

(44) 

(45) 

Following the procedure used to derive Eqs 19 and 20 and operating on 
Eqs 42 to 45, we obtain 

/(1 = /,o+/r + 2/l,o/lfcos(Aq>,):W(n,) 

/,2 = /,0+/r + 2,-l(0/lrsin(A<p,)A/(n,) 

(46) 

(47) 

//3.= /,o+/r-2/l,o/ircos(Aq),)M(n,) (48) 

/,   =/,  +Ir-ZA. /lrsin(Aq>,)M(n,). (49) 

Then, from Eqs 46 to 49 it follows that 

(/,|-/(3) = 4,-l(o/!,.cos(A(P,);V/(n() 

and 
(/,.,-/,4) = 4,-l(o/lrsm(A(p,).-W(fi,) 

(50) 

(51) 
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If the viewing mode is selected, then, based on the input described by Eqs 
50 and 51, the EOH system produces an image which can be represented by 

N/(/,I-/,3)
2 + (/,2-/«4)2 = 4/l0/lr|A^(n,)|. (52) 

The image represented by Eq. 52 is displayed live on a TV monitor and it can be 
stored in processor memory at any time, see Section 2.2. 

If the image is to be processed quantitatively, then the EOH system, oper- 
ating on the input described by Eqs 50 and 51, produces a data image which 
can be represented by 

(/,,-/,3)
2 + (/,2-//4)

2=i6/0/r,w2(n,) (53) 

J.(|ft|) 

j.2(| n I) 

Fig. 3. The zero-order Bessel function of the first kind and 
its square, defining locations of the centers of dark fringes 
seen during reconstruction of the time-average holograms 

of the vibrating objects. 

Equations 52 and 53 indicate that the viewing and the data images are 
proportional to the characteristic function and to the square of the characteristic 
function, respectively. The characteristic function is determined by the object's 
temporal motion, and for the sinusoidal vibrations, assuming that the vibration 
period is much shorter then the TV framing time, 

.\/[.Q,(.v.y)] = J„[.Q,(.v.y)]. (Ivl) 

or, by eliminating the arguments (.v. y) for simplification, we can also write 

A- 12 



Optical Inspection and Testing I  159 

.A'/(.Q,) = J0(D,). (55) 

where J „ is the zero-order Bessel function of the first kind, Fig. 3. Therefore, 

using Eq. 55, Eqs 52 and 53 become 

>/(/«,-/,3)
2 + (/i2-/,4)

2 = 4^0/lrU0(n<)|, (56) 

and 

(/,,-/, 3)
2 + (/,2-/,4)

2= \6IJrJ
2

0(Du). (57) 

respectively. 

Equation 56 represents a viewed image that is modulated by a system of 
fringes described by the zero-order Bessel function of the first kind, while Eq. 57 
shows that the data image is modulated by the square of this function. Thus, 
centers of the dark fringes are located at those points on the object's surface 
where J u (.0.,) equals zero, as shown in Fig. 3. This figure indicates that the 

zero-order Bessel fringe is much brighter than the higher order J 0 fringes. 

Since the zero-order fringes represent the stationary points on the vibrating 
object they allow easy identification of nodes. The brightness of other fringes 
decreases with increasing fringe order and can be directly related to the mode 
shapes. 

It should be noted that the higher order zeros are nearly equally spaced 
giving the J 0 function an almost periodic nature. This periodic nature of the 

Bessel fringes is utilized in quantitative interpretation of images recorded by the 
EOH system as discussed in Section 3.2.1. 

In the EOH system, the data provided by the CCD camera are processed 
to produce spatial irradiance distribution represented by Eq. 57 for every pixel 
in the image frame at the rate of 30 frames per second. Each frame contains 
512x480 8-bit numbers so that each image consists of 245,760 points. 

For visual examination of the vibration modes, the time-average hologram 
images corresponding to Eq. 56 are displayed on the TV monitor. These 
images are generated concomitantly by the pipeline processor of the EOH sys- 
tem. 

To produce data suitable for quantitative analysis of time-average holo- 
grams, 16-bit images represented by Eq. 57 are stored. These data are stored 
in two 8-bit bytes per pixel and produce a frozen image which can be displayed 
on the TV monitor one byte at a time, that is, either as a high-byte image or a 
low-byte image. y A-13 
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3.2.1.  Determination of the fringe-locus function for the vibrating object 

To interpret electronically recorded time-average holograms quantitatively, 
the argument of the J2 function, appearing in Eq. 57, must be determined. 

One method to determine this argument, suitable for the time-average images 
recorded by EOH, uses the fact that it is possible to shift J 0 fringes in a man- 

ner similar to that in which phase modulation shifts cosinusoidal fringes in con- 
ventional double-exposure hologram interferometry45. In time-average 
holography, this is done by modulating the phase of either the object or the 
reference beams sinusoidally at the same frequency and phase as the object 
vibration. Such a process can be represented mathematically by addition of a 
phasor bias, ß, to the argument of the Bessel function, resulting in the charac- 
teristic function 

/W(n,).ß) = 70(n,-ß). (58) 

For purposes of analysis by this method, the object must be made to 
vibrate in only one vibration mode at a time so that the motions of its various 
parts are either in or out of phase with one another. If the phase of the sinusoi- 
dal beam modulation is adjusted to coincide with that of the object vibration, the 
phasor bias becomes a simple additive term within the argument of the Bessel 
function, that is, 

A/(D,./J) = J0(D.,-B). (59) 

Therefore, Eq. 57 becomes 

(/,l-/(3)
2 + (/,2-//4)

2= \610IrJ
2

o{nt-B). (60) 

For comparison, the general equation representing the irradiance, /„,, of 

an image reconstructed from a time-average hologram is 

where / u, represents local average background irradiance from scattered light 

and / ,„, is the local maximum irradiance. Therefore, Eq. 60 is the special case 

of Eq. 61 with 

/^(Z,,-/^)2^^-^)2 (62) 

/Ol = 0. (63) 

and 
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/m<=16/0/r. (64) 

The output of the processor in the data mode, / h (, is stored in the host 

computer for different values of B, while }at, /m,,and fl, constitute three 

unknowns, and the goal of the analysis is to determine fl,. Unfortunately, the 

Bessel function is not separable in terms of fi, and B, so a straightforward 

solution is not possible. However, the nearly periodic nature of the J 0 function 

allows an approximate solution for the fringe-locus function. This approximate 
solution recognizes that Eq. 61 is similar to the general equation for the irra- 
diance distribution, /,,, for an image reconstructed from a conventional double- 

exposure hologram with cosinusoidai fringes, that is, 

/;i = /c, + /mcos2(n-ß) (65) 

where ./„ in Eq. 61 has been replaced by cos2 and D, bas been replaced by 

-Q. 

Examination of Eq. 65 shows that it, just like Eq. 61, also has three 
unknowns:/„,/,„, and n. However, the cos2(fl- B) term, appearing in Eq. 

65, unlike the Jl(Cl, - B) term of Eq. 61, is separable in its component argu- 

ments. To facilitate solution for D , Eq. 65 is rewritten as 

/h = />/mcos(2n-2Z?) (66) 

where 

and 

1   = I   + — 'a        'a -o (67) 

/„,= 
2 

(68) 

With three values of B, three simultaneous equations of the type of Eq. 66, 
can be solved uniquely for D. The three simultaneous equations are 

/„ =/Q + /mcos(2n), (69) 

and 

/„  =/0 + /mcos(2n-2ß) 

/ft3 = /n + /mcos(2n + 2ß), 
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corresponding to the zero-, positive-, and negative-shifts, respectively. Solution 
of Eqs 69 to 71 yields 

1 -cos(2£) 
sin(2ß) 

K3    K2 

2/h,    I h2    I h3 

(72) 

If the three irradiance distributions /„,,, /„,2,and Ihl3, corresponding 

to the three time-average holograms, are substituted into Eq. 72 the result is 
-^cw—.thatis, 

n. =-tan ' appro*        p 

1 -cos(2Z?) 
sin(25) 

u. 
2/„. -L 

'•,/ 

(73) 

The value of fl,approx , computed from Eq. 73, differs from the correct 

argument, .0.,, of the J„ function, because of the inequality between the J2„ 

and the cor/ functions, and should be expressed as 

a a (74) 

where c is the error representing this difference. 

Equation 73 yields values of H, modulo  180°. By adding or sub- 

tracting  1 BO °, depending on the sign of the numerator in Eq. 73, whenever the 
denominator is negative, fi,c,ppruv can be obtained modulo 360°. The image 

can be searched by the computer to locate discontinuities to define areas 
where the missing multiples of the 360 ° should be added to unwrap function 

fipprOA By further identifying pixels within the zero-order fringe, an overall 

level shift can be applied to make those pixels have values between ± 1 80 °. 

Errors t" can be computed for any value of D, for specific values of B to 

create a lookup table. This lookup table is used to correct the values computed 
from Eq. 73 that have been unwrapped and level shifted. In this way, vibratory 
deformations can be obtained from time-average hologram reconstructions with 
little more mathematical computation than is required for static deformations. 
Once the correct values of fi, are determined, they can be used in any one of 

the equations for quantitative interpretation of time-average holograms32. 
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3.2.2. Generation of a lookup table 

The lookup table is computed from Eqs 61 and 73. First, the three values 
of /„, are computed using Eq. 61 for the three values of B, that is, 

/,„, = /«,+ /m,^(n(), (75) 

lhirlat + ImtJ
2Snt-B), (76) 

lht2-lat+lntJ\{n, + B). (77) 

The values of B used in Eqs 75 to 77 must be of the magnitude equal to that 
used while setting bias modulation, see Section 4.2. For example, B can equal 
toüand±ir/3. 

Substitution of Eqs 75 to 77 into Eq. 73 yields 

.a, ' approx 

itan"{ 
-cos(2£) 

sin(25) 

j2
0{nl+B)-Jl(nl-B)       \ 

2JUnl)-JUn,-B)-j2
u(nl^B) 

(78) 

In order to construct a lookup table corresponding to the specific value of 
B, Eq. 78 is used to compute .Qu,,/jro.v for the desired range of values of .0.,. 

Tabulating .0, versus na„prox produces the lookup table for the given value of 

the bias modulation. It must be remembered, however, that if the magnitude of 
the phase modulation of the bias vibration changes, new lookup table must be 
constructed. 

4.  EOH SYSTEM AND PROCEDURE 

4.1. General description of the EOH system 

The EOH system is shown in Fig. 1. In this system, the laser output is 
divided into two beams by means of a continuously variable beamsplitter. One 
of these beams is directed via a piezoelectrically driven mirror and is shaped by 
the spatial filter beam expander assembly to illuminate the object uniformly; 
this mirror can be driven at the same frequencies as the object excitation to pro- 
vide bias modulation. The other beam, also spatially filtered and expanded, is 
directed toward the reference input of the speckle interferometer by another 
piezoelectrically driven mirror which introduces 90° phase steps between con- 
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secutive frames. The speckle interferometer combines the object beam with 
the reference beam and directs them collinearly toward the detector array of the 
CCD camera, Fig. 2. The camera detects the irradiance patters and sends them 
to the pipeline processor. The sequential frames are processed to determine 
quantitative information on the object's displacements and/or deformations. All 
computations are dome in the pipeline processor which operates under control 
of a host computer. The host computer also controls excitation of the object, 
coordinates it with the bias modulation imposed on the object beam, and keeps 
track of the 90 ° phase stepping between the frames. 

By operating on each input frame and its three predecessors, the pipeline 
processor produces a hologram which is viewed concomitantly on the TV moni- 
tor. Such holograms are produced for the zero, as well as the positive and neg- 
ative bias modulations, for each loading condition of the object. The resulting 
three electronic holograms are then processed by the host computer to 
determine spatial distribution of the displacement vectors which are viewed 
directly on the computer monitor. 

4.2.  Setting the bias modulation 

In order to interpret electronically recorded time-average holograms quan- 
titatively, both the magnitude and the phase of the bias modulation must be 
known. One method to set the bias vibration is as follows4^. 

Adjust object excitation so that several J 0 fringes are seen across the 

object and the zero-order fringe is well identified. Then, increase magnitude of 
the bias vibration until the zero-order fringe is lost. Following this, adjust phase 
of the bias vibration until the zero-order fringe is regained and its width is maxi- 
mum. At this point, phase of the modulation equals the phase of the vibrating 
object. 

Next, turn off the object excitation and reduce magnitude of the bias vibra- 
tion to zero - do not, however, change the bias phase. Then, slowly increase 
magnitude of the bias vibration until the entire object goes black, that is, when 
the first null of J„ occurs. At this point, the value of B\s 2.4048, Fig. 3. Record 

the voltage output of the bias modulation controller for this condition and reset it 
by a scaling factor. The scaling factor is the desired magnitude of the bias 
vibration, e. g.; n / 3, divided by 2.4048, the argument of the first zero of the ./ „. 

The phase of this bias vibration should be recorded; it corresponds to the 
positive-shift modulation. This completes calibration of the magnitude and the 
phase of the bias vibration and the sequence of the three holograms can be 
recorded. Before this is done, the bias excitation should be turned off, the 
object excitation should be turned on, and the excitation magnitude should be 
adjusted to the desired level. 
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When the desired object excitation is achieved, the first time-average holo- 
gram is recorded without the bias excitation. This is the zero-bias modulation. 
Then, the second hologram is recorded after switching on the bias excitation 
with the magnitude and phase as set above. This is the positive-shift bias mod- 
ulation. Finally, the phase of the bias excitation is shifted 180 ° with respect to 
that used during recording of the second hologram, the bias magnitude is kept 
the same, and the third hologram is recorded. This is the negative-shift bias 
modulation. Irradiances of the three time-average holograms recorded in this 
way are represented by Eqs 75 to 77, respectively. 

It should be noted that the bias vibration must be recalibrated for each 
vibration frequency of the object. 

5.  REPRESENTATIVE APPLICATIONS OF EOH 

Representative results obtained using EOH are shown in Figs 4 to 7. The 
object used was an aluminum cantilever plate which was rigidly fixed along the 
bottom edge. All interferograms shown in these figures were produced elec- 
tronically and were recorded by video printing the displays on the TV monitor. 
All wire frame displacement plots were based on the irradiances measured from 
the sets of three holograms corresponding to the zero, the positive, and the 
negative bias modulations added to the object beam at the object's vibration 
frequency. 

It should be noted that because of the plate's aspect ratio only (250x400=) 
100,000 pixels out of the total available of (512x480=) 245,760 pixels were used 
in the interpretation of the images produced by the EOH. Furthermore, in order 
to produce visually acceptable plots, wire frame grid of 5x5 mm for representa- 
tion of displacements was selected. In this way, displacements at only a very 
small number of points (24x28=672), out of the total of 100,000 points 
considered on the object, were displayed. 

Figures 4 shows the cosinusoidal fringe patterns of the statically loaded 
cantilever plate, under four different loads. The electronic hologram corre- 
sponding to the maximum load used in this study shows 33 fringes along the 
plate. 

Figure 5 shows the cantilever plate vibrating in its second torsional mode 
at 966 Hz. More specifically, Fig. 5a shows the time-average hologram pro- 
duced by the EOH system without the bias modulation of the object beam, 
whereas Figs 5b and 5c show the holograms with the equal positive and 
negative bias modulations added to the object beam at the object's vibration 
frequency, respectively. Note the symmetric location of the zero-order fringe in 
Fig. 5a and the offsets in the symmetry, due to the bias modulation, in Figs 5b 
and 5c. 

A-19 



166 I Critical Reviews Vol. CR40 

Fig, 4. The EOH images of the double-exposure holograms of the 
cantilever plate: the static toad increases from (a) to (d). 

Based on the irradiance values from the corresponding points in Figs, 5a 
to 5c, displacements were computed as a function of xand y coordinates on 
the vibrating plate. These displacements are shown in Fig. 5d and correlate 
well with the image displayed. 

A - 20 



Optic»! Inspection and Testing I  167 

Fig. 5. Cantilever plate vibrating at 966 Hz: (a) image of the plate and 
the fringe pattern produced by the EOH system during the time- 

average recording of the piate vibrating at its resonance without the 
bias modulation of the object beam, (b) the same plate and the 

vibration as in (a) but with a bias modulation added to the object 
beam at the object's vibration frequency, (c) the same plate and the 
vibration as in (a) but with the bias modulation added to the object 

beam at t 80"'with respect to (b), (d) wire frame representation of dis- 
placements computed from the images shown in (a) to (c). 

Figures 6 and 7 show comparison between the wire-frame displacements 
obtained by the EOH and those computed by the finite element method (FEM), 
Figures 8a and 7a represent the images of the pfate vibrating at 1082 Hz and 
3148 Hz, respectively. The displacements determined by the EOH are shown in 
Figs 8b and 7b, while those determined by the FEM are shown in Figs 6c and 
7c, The comparison of the EOH and the FEM results shows good correlation. 
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Fig. 6. Comparison of the EOH and the FEM results for the cantilever 
plate vibrating at 1082 Hz: (a) the EOH image, (b) the EOH displace- 

ments, (c) the FEM displacements. 

Advances in three-dimensional graphical rendering produce realistic pro- 
jections of images recorded by EOH53. Figure 8 shows a rendered representa- 
tion of the displacements determined from the images of Fig. 5. In this 
representation, all (250x400=) 100,000 pixels are utilized, which allows more 
complete representation of the results than the wire frame representation of Fig. 
5d. 
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Fig. 7. Comparison of the EOH and the FEM results for the cantilever 
piate vibrating at 3148 Hz: (a) the EOH image, (b) the EOH displace- 

ments, (c) the FEM displacements. 

6. CONCLUSIONS 

This critical review discusses principles of the electro-optic holography 
(EOH), presents fundamentals of quantitative interpretation of the electronic 
holograms recorded under static and dynamic loading conditions, and illus- 
trates application of EOH with representative examples. 

The EOH system allows electronic recording, storage, processing, and dis- 
play of holographic interferograms in real-time. Using this system, the displace- 
ments can be extracted from the electronically recorded hologram by a method 
analogous to optical fringe shifting. 

A-23 



I/O f Critical Reviews. Vol. CR46 

Fig, 8. Rendered representation of the displacements 
determined from the EOH images of Fig. 5. 

Using the EOH system, resufts are obtained in a truly automated manner. 
The interferometric information is recorded at the rate of 30 frames per second, 
it is processed in a pipeline fashion, and produces results which have very high 
spatial density - currently up to 512x480 points per frame. These results corre- 
late weil with the holograph-really produced fringe patterns and they also corre- 
late well with the FEfvl predictions of the object's load-displacement 
characteristics. 

Currently, work is underway to merge, or unify, within the host computer, 
the displacements determined by the EOH system with the computational pro- 
cedures of FEM. This feat will result in a hybrid system which will allow automa- 
ted, quantitative analysis of structural deformations. Interpretation of the results 
of these analysis will he facilitated by the three-dimensional rendering of the 
holographic data. 
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Abstract 

A new method of unwrapping two-dimensional periodically discontinuous phase data is 

developed in this thesis and results from application of the method to electro-optically 

generated phase data are presented. The method, whose foundations lie in the 

minimization of the energy of the surface determined by the unwrapped data, fits planar 

surface patches to previously processed data, then uses the best fit plane's parameters to 

estimate the value of the pixel under consideration. At each pixel, a new value composed 

of the sum of the original value and an integral multiple of the magnitude of the phase 

discontinuity is assigned. Processing proceeds along an expanding wavefront originating 

from a seed point chosen as the reference for the measurement. The facet based fringe 

number selection method has been found to be highly reliable even for incomplete, noisy 

data. 
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Preface 

The algorithms described in this thesis and the software written to implement them are 

currently used in the Center for Holographic Studies and Laser Technology (CHSLT), 

Department of Mechanical Engineering, Worcester Polytechnic Institute. The system, as 

described here, performs micrometer scale measurements of deformations and vibration 

amplitudes for the study of the mechanical properties of materials and structures. Those 

readers who are interested in learning more about the system and techniques presented 

here should contact Professor Ryszard Pryputniewicz to arrange a visit to the laboratories 

of the CHSLT. Specific examples of the application areas outlined in Chapter 1, Section 

2 can be found throughout the labs. 

B-4 



Acknowledgments 

This thesis was supported by the Flight Dynamics Directorate, Wright Laboratory, 

Aeronautical Systems Division (AFSC), United States Air Force, Wright-Patterson AFB, 

OH 45433-6553. 

Two members of the faculty of Worcester Polytechnic Institute, Prof. Michael A. Gennert 

and Prof. Ryszard Pryputniewicz, made this thesis possible. Without their help, support, 

guidance and encouragement, none of this work could have been done. I am extremely 

grateful to both of them for their assistance and friendship. 

B-5 



Table of Contents 

Chapter 1. Introduction-Holographic Interferometric Measurement. B - 12 

1.1. Purpose of holographic measurement. B - 12 

1.2. Applications of EOH. B - 13 

1.3. Brief description of EOH. B - 16 

1.4. The phase unwrapping problem. B - 19 

1.5. Document Overview. B - 20 

Chapter 2. Overview of EOH, energy minimization and facet based estimation.    B - 22 

2.1. Description of a planar light field. B - 22 

2.2. Interference of two coherent light fields. B - 25 

2.3. Laser Speckle. B - 27 

2.4. Coherent light, laser speckle and EOH. B - 28 

2.5. Electro-optic holography system components. B-31 

2.5.1. Fixtures. B-31 

2.5.2. Optical system. B - 32 

2.5.3. System electronics. B - 33 

2.6. Mathematical description of holograms. B - 33 

2.7. Static mode data acquisition. B - 34 

B-6 



2.8.   Time average mode data acquisition. 

2.8.1. Measured intensity modified by the characteristic Bessel function. 

2.8.2. Time average image capture. 

2.8.3. Bessel function behavior. 

2.8.4. Solution for unambiguous phase. 

2.9.   Energy minimization. 

2.9.1. Image model. 

2.9.2. Neighborhoods for processing image data. 

2.9.3. Edge labeling. 

2.9.4. Energy definitions for labeling and phase unwrapping. 

2.10. Facet based estimation. 

Chapter 3. Previous approaches to phase unwrapping. 

3.1.  Basis for two dimensional unwrapping. 

3.2.  Irregular shapes. 

3.3.   Cellular automata. 

3.4.  An image processing techniques based approach. 

3.5.   Other techniques. 

3.6.  Conclusions derived from past implementations of phase unwrappers. 

Chapter 4. Phase unwrapping by planar facet fitting. 

B-39 

B-40 

B-42 

B-43 

B-46 

B-52 

B-52 

B-53 

B-53 

B-54 

B-57 

B-60 

B-60 

B-61 

B-62 

B-63 

B-64 

B-65 

B-67 

B-7 



4.1. Overview of the technique. B - 68 

4.2. Noise, modulation magnitude and the weighting function. B - 69 

4.3. Seed point selection and initial growth. B-71 

4.4. Expanding wavefront processing order. B - 73 

4.5. Planar facet fitting to an incomplete, weighted array of data points B - 75 

4.6. Fringe number assignment. B - 83 

4.7. Fitting iterations for energy minimization. B - 84 

4.8. LUT correction for time average holograms. B - 85 

4.9. Data smoothing with planar facets. B - 85 

Chapter 5. Results. B - 87 

5.1. Static mode examples. B - 87 

5.2. Time-average mode examples. B - 93 

Chapter 6. Conclusions and future work. B - 100 

6.1. Benefits and features of the facet based fringe unwrapper. B - 100 

6.2. Suggestions for future improvements and enhancements. B - 102 

6.2.1. Incorporate correction LUT into time average unwrapping directly.      B - 102 

6.2.2. Add facilities for interactive drawing of boundaries. B - 103 

6.2.3. Data smoothing. B - 103 

6.2.4. Speed improvements. B - 104 

B-8 



6.2.5. Noise threshold selection enhancement. 

6.3.   Summation. 

Appendix A. Mathcad model of the Bessel fringe function. 

Appendix B. Software Block Diagrams. 

References. 

B-106 

B-106 

B-108 

B - 111 

B-114 

B-9 



List of Figures 

1.1. Simple film-based holographic apparatus. B - 16 

2.1. Two sinusoids of the same frequency. B - 27 

2.2. Electro-optic holography system block diagram. B - 32 

2.3. Static holography 1-D model. B - 39 

2.4. Geometry of incident and reflected light. B - 41 

2.5. One-dimensional Bessel function squared. B - 44 

2.6. Surface plots of the fringe function vs. relative phase and amplitude. B - 45 

2.7. Time-average holography 1-D model. B - 51 

4.1. Processing order for 8-connected FIFO based sequential scan. B - 74 

5.1. Phase unwrapping of a statically loaded wine goblet. B - 89 

5.2. Phase unwrapping of a statically loaded rectangular plate. B - 92 

5.3. Phase unwrapping of time-average hologram of plate vibrating at 6,540 Hz.   B - 95 

5.4. Phase unwrapping of time-average hologram of plate vibrating at 34,061 Hz. B - 98 

B. 1. Software Block Diagram (Top Level). B - 111 

B.2. Data Acquisition Block Diagram. B - 111 

B.3. Phase Unwrapping Block Diagram. B - 112 

B.4. Energy Minimization Iterations Block Diagram. B - 112 

B-10 



B.5. Smoothing Block Diagram. B - 113 

B-ll 



Chapter 1. Introduction - Holographic Interferometric Measurement 

This master's thesis project develops a new algorithm to unwrap 2K spatial discontinuities 

in image data consisting of intensity values which correspond to the phase of two 

interacting light fields. The overall goal of the project can be summarized by the 

following statement: Given an object whose surface undergoes small deformations or 

vibrations, and an electro-optic holography (EOH) system whose output is a set of images 

containing fringe patterns dependent on out-of-plane displacement, find the surface 

implied by the data which is most likely to depict the actual surface displacement. The 

surface displacement is directly related to the phase of the fringe locus function which 

describes the fringe pattern seen on the surface of the object in images created with an 

EOH system, so, by an inverse operation, the displacements can be derived from 

observed fringe patterns. 

1.1 Purpose of holographic measurement 

The holographic interferometry technique, along with phase unwrapping, generates data 

sets in the form of images whose values correspond to phase changes of the illuminating 

light along the viewing axis of a surface under observation. Since data points are 

produced at every point in the image of the surface, very high density information results. 

The phase change which the technique measures may be induced by either surface 

deformations due to stress on the object, or due to the displacement of the surface of the 
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object during sinusoidal vibrations. Knowledge of the wavelength of the illuminating 

laser light and the geometry of the illumination and observation angles allows the 

conversion of measured phase to actual displacements. Surface deformations due to 

stress are measured with the "static" holography technique while vibration amplitudes are 

measured with "time-average" holography. In each case, the magnitudes of the measured 

displacements are very small. The maximum displacement measured in one image is 

typically on the order of 5x10"* meters or 5 micrometers (assuming there are about 10 

fringes in the image). The EOH process thus yields accurate, full field measurements of 

small surface displacements either due to an applied stress, or due to vibration. 

1.2 Applications of EOH. 

The data generated with EOH can be used for either qualitative part characterization or to 

determine exact quantitative responses of a part to known stresses. Applications range 

from validation of analytical or modeled results to inspection tasks. A brief overview of 

EOH applications follows. 

The use of computer simulation software to determine the behavior of critical parts 

during mechanical design can lead to greater efficiency in the design process. However, 

while the programs generate valid results when used properly, even small mistakes in 

their use can render the results meaningless. In the effort to improve modeling software, 

experimental validation becomes critical. For example, when searching for the resonant 

modes of a mechanical part or structure, time average EOH provides real time qualitative 

feedback. As the part is subjected to a monotonic sinusoidal excitation signal which 
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sweeps over a range of frequencies, fringes appear and disappear on the surface of the 

object. The fringe patterns are evident whenever the sweep passes one of the part's 

resonant modes. The distribution of fringes on the surface indicates how every point on 

the object moves as it vibrates. These fringes can subsequently be processed to give a 

topological map of the surface deformation at the extrema of the vibration. The resonant 

modes found experimentally can be compared to the modes found by the modeling 

software to determine the validity of the software simulation. 

EOH can be used to validate complex new analytical models of mechanical behavior, 

while simple, well understood analytical models can be used to validate the EOH process 

itself. Exact solutions for behavior can be found for simple, well understood object 

geometries. The results generated by empirical tests with the EOH system can be 

compared to these well known solutions to validate the EOH system's procedures and 

results. Then, as new analytical models are proposed for more complex geometries, EOH 

testing can help prove or disprove the model's validity. 

The analytical models exist to predict modal frequencies as well as deformations under 

static loads for simple shapes. The predicted results for modal frequencies can be 

compared to the resonant modes identified with a frequency sweep using the EOH system 

in time average mode. Predictions for static deformations can be compared directly to the 

displacement data generated by the EOH system for quantitative validation. These two 

approaches allow experimental researchers to prove the reliability of the EOH system's 

two modes of operation. 
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For both finite element method (FEM) validation and analytical comparison, quantitative 

results are required to evaluate the degree to which the models match the experimentally 

derived data. However, another class of applications makes use only of qualitative results 

to perform inspection tasks. Most often, EOH is used in inspection to test the quality of 

the bond between layers of laminated materials. Such inspection can be performed by 

any of a variety of techniques for stressing the object. Depending on the technique, either 

time average or static holography may be used. The technique employed depends on the 

nature of the material to be tested. 

Time average EOH is used to inspect the quality of the bond between very stiff parts. 

The substrate to which a stiff laminate has been bonded is affixed to a piezo electric 

transducer (PZT shaker) and a white noise signal is applied to shake the part. When the 

EOH display is viewed, any area where the materials are not bonded properly turns dark 

or shows a pattern of concentric rings. The area of the bond fault corresponds to the 

darkened area in the hologram, and can be measured directly. 

Static EOH is used to inspect bonding quality in softer materials. Fiberglass or carbon 

fiber laminates fall in this class. These materials are inspected by a process where first a 

reference image of the surface of the laminate is captured, then the sample is either heated 

or subjected to a small drop in pressure. Any failures in the bond between the layers will 

cause a bubble to form on the surface. The bubble will appear as either a darkening or a 

bull's eye pattern whose perimeter defines the edge of the poorly bonded area. Each of 
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these application areas has been investigated in the laboratories at WPI's Center for 

Holograhpic Studies and Laser Technologies (CHSLT). 

EOH has been used in numerous other applications where extremely small displacements 

must be measured. Many more applications ranging from analysis of structural dynamics 

under vibratory, thermal or pressure gradient induced stress to characterization of the 

operating parameters of micro machines are also likely candidates for empirical testing by 

EOH methods in the future. 

1.3 Brief description of EOH. 

The EOH system employs an apparatus similar to that used to generate a film hologram, 

as shown in Fig. 1.1. 

Mirror 

Object Lens, 

Lensc 

Mirror 

Interfering object and 
/"" reference light fields. 

Mirror 

Object beam 
Laser 

earn 
splitter 

Fig. 1.1   Simple film-based holographic apparatus. 
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A laser beam is divided into two parts, the object beam, which illuminates the part under 

scrutiny, and the reference beam, which is recombined with the image of the part to create 

interference between the two beams. When an object illuminated by laser light is imaged, 

the finite aperture of the optics causes speckles to appear on the surface of the object in 

the image. By changing the phase of the reference beam relative to the object beam in a 

pair of images, the intensity of speckles can be modulated since the relative phases of the 

interfering light fields change. If either an object is vibrating in the image, or a pair of 

image sets acquired before and after a small deformation are processed, a system of 

fringes appears on the surface of the object where the fringes are spaced such that relative 

surface displacement from one fringe node to the next is ~X/2 (k is the wave length of the 

illuminating laser light). 

As mentioned above, there are two modes of operation for the EOH system: time average 

and static modes. Time average mode is used for the study of vibrations , while static 

mode is used to study displacements of a surface due to some form of loading. 

Static mode allows measurement of displacements which do not change over periods of at 

least 4/30th seconds (See Chapter 2, Section 8 for a complete description). Two 

cosinusoidal fringe patterns are produced by the image processor where the phase of one 

of the two is n/2 out of phase with the other. Then, the measured phase difference 

induced by the displacement, Cl\ modulo 2% can be recovered by 

Q' = arctan(^g), KcosQ." 1.1) 
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where Q is the actual phase difference between the light fields '. Notice that, though the 

phase actually varies continuously across the surface, the solution for Q' is discontinuous 

and repeats due to the arctan. The phase must therefore be unwrapped to recover the 

actual surface displacement values. 

Time average mode generates three non-overlapping Bessel function fringe patterns in 

three separate images, where the fringe pattern in each has been offset by a known 

amount (See Chapter 2, Section 9 for a complete description). The measured phase 

difference induced by the displacement, Q\ modulo n can be recovered by the three 

bucket technique2_4 as expressed in the following equation: 

Q' = 1/2 arctan 'l-coslff^     h.-h, 
■   sin2£   Jlh-h-h 

1.2) 

where B is a bias signal introduced to shift the fringes in the images, and Ihl, Ihl and Ihj 

are the three images containing fringes. To derive this solution for Q', the Bessel 

function has been approximated by a cosine. The resulting phase contains discontinuities 

at each 2n repetition of the arctan function. These discontinuities must be removed by 

the phase unwrapper prior to completing the task of recovering the actual displacement 

values from the phase data. Once the phase has been unwrapped, a correction is applied 

to account for the difference between the Bessel function fringe spacing in the actual data 

and the cosine spacing assumed in the derivation of the expression for the phase given 

above. The correction applies a lookup table (LUT) to map from the cosine 
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approximation to the actual Bessel function's phase. Then the displacement can easily be 

computed from the corrected phase. 

1.4 The phase unwrapping problem. 

For each of the two types of holography, as well as other interference based applications, 

unwrapping a two dimensional phase map is required to recover the desired physical 

measurements. Any measurement system which relies on interference effects will require 

some kind of phase unwrapping since the associated fringe functions will necessarily 

have a 2% periodicity due to the periodic nature of the fringes. Since the fringes are 

sinusoidal, or approximated as such, the phase will be recovered by some inverse 

trigonometric function (usually the arctan), which also has 2K periodicity. 

The unwrapping process is complicated by a number of factors including noise, 

mis-calibration, object discontinuities and shadows. In the simplest case where 

calibration, discontinuity and shadow effects are ignored, the noise in the image is often 

sufficient to confuse a phase unwrapper. When phase discontinuities are characterized as 

intensity transitions greater than some threshold between pairs of pixels , noise can 

obscure the transition. Then, instead of a single step transition, the step can spread over a 

number of pixels such that none of the changes between pairs of pixels are larger than the 

threshold, yet the sum of the steps constitutes a 2n transition. Such a transition will be 

missed by the unwrapper since none of the pixel pairs show the requisite step size. 

Conversely, if a noisy pixel occurs in the middle of a fringe such that the difference with 
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one of its neighbors is greater than the threshold, but the difference is not greater on the 

opposite side, then a transition will be erroneously introduced. To complicate the 

problem further still, the offset applied to higher order fringes depends on the number of 

fringes traversed from a starting point to reach the current point. So, any inappropriate 

transitions inserted while traversing the path to this point are accumulated and propagated 

through this pixel to its neighbors. The error then propagates to all the pixels which 

depend on the neighbors through the remainder of the processing. 

While there are many sources of difficulties in the problem, there are also some 

characteristics which can be exploited to assist in the phase unwrapping task. 

Specifically, the displacement to be measured is continuous except at borders and its 

slope will tend not to change rapidly. Though the slope may be discontinuous at an 

interface between two different materials in one object, the unwrapper can still treat each 

surface independently since they can subsequently be joined with little difficulty. The 

continuity of a surface can be used as a constraint on the possible fringe number values 

which a point can take relative to its neighbors. The use of this constraint is central to the 

proposed approach for fringe unwrapping, as detailed in Chapter 4. 

1.5 Document Overview. 

This first chapter gives an overview of electro-optic holography and provides the 

motivation for working to improve on existing phase unwrapping techniques. Chapter 2 

provides detailed background material for EOH, energy rmnimization techniques used in 

computer vision labeling software and, by extension, facet based energy minimization. A 
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discussion of previous techniques employed in phase unwrapping follows in Chapter 3. 

Chapter 4 develops the facet based unwrapping technique conceived for this project, then 

Chapter 5 shows some results and Chapter 6 draws conclusions and provides a 

discussion of the strengths and weakness' of the approach. 

The appendices contain related information which may be of use. Appendix A details the 

MathCad model used to investigate the behavior of fringes in time-average holography 

when a bias vibration signal is used to shift the fringe pattern on the surface of the part. 

Appendix B gives a flow diagram of the facet based phase unwrapping software. 
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Chapter 2. Overview ofEOH, energy minimization and facet based 
estimation. 

The following sections outline the theoretical basis for the mathematical description of 

the electro-optic holographic process. 

2.1 Description of a planar light field. 

The behavior of light fields can be described by a set of interdependent differential 

equations deduced in 1861 by Maxwell. Working from the theoretical and experimental 

efforts of predecessors such as Coulomb, Gauss, Ampere, Faraday and others, Maxwell 

discovered that the set of equations which now bear his name provided a unified system 

by which to explain all electro-magnetic behavior. Soon after, the same set of equations 

was shown to describe the behavior of light giving rise to the description of light as an 

electro-magnetic phenomenon. Later, with the emergence of quantum theory, Maxwell's 

description of light as an electro-magnetic wave has been shown to be incomplete. 

Phenomena such as the photoelectric effect showed that light also displays particulate 

behavior and helped to build the quantum model. While Maxwell's equations have been 

superseded by quantum theory, they still give accurate approximations of 

electro-magnetic behavior over a broad range of conditions. Planar light fields and their 

interactions are among the applications for which Maxwell's equations provide a perfectly 

sufficient description5. 
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Maxwell's equations applied to electro-magnetic disturbances in a linear, isotropic 

dielectric media which contains no free charges consist of four second order differential 

equations as follows: 

dEx [ dEy [ dEz 

dx      dy      dz 
VE = ^ + ^ + ^ = 0 

VH = ^A^ = 0 
dx      dy   '   dz 

2.1) 

2.2) 

, 8R        dHx.      dHy.      dHZl 

ar Or 2.3) 

curIH-f^   ¥k)i + (dH*   dHA.JdHy   dH\ 

M dEx.     dEy.     dE2 
~£-p7 = -s^T1" e-äfJ " E 0/ 0/ 0/ ör 

2.4) 

where E is the electric field, H is the magnetic field, 8 is the permittivity of the dielectric 

medium and fi. is the permeability of the dielectric medium. 

For linearly polarized light, the electric field E disappears along two of the three axes. 

Assuming a plane wave travels toward +x, Ex is zero. Since the light is assumed to be 

linearly polarized, we can arbitrarily choose one of the two remaining components to be 

zero as well, say Ez, leaving Ey as the only non-zero component. Similarly, the magnetic 

field H then has zero components along x and v leaving only Hzasa. non-zero 
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component. This follows from the fact that a moving charge creates a magnetic field 

perpendicular to the direction of motion of the charge, and the changing electric field of 

the light represents a charge in motion along the y axis. 

Under the conditions for linear polarization outlined above, Maxwell's equations simplify 

to: 

dHz 

dz 
= 0 2.6) 

dEy.   dEyx dH2l 

dHz.    dHz.     dEy. 
V"&J=E^ 2-8) 

The above system of differential equations can only be satisfied when E and Hz are 

functions of at most x and /. E cannot be a function of v due to the condition of Eq. 2.5. 

Also, E cannot be a function of 2 since the x component of Eq. 2.7 is zero. Similarly, Hz 

cannot be a function of z or v from Eqs 2.6 and 2.8, respectively. 

Given these simplifications, Eqs 2.7 and 2.8 become: 

2.9) 

2.10) 

ÖEy   _ 

dx 
dHz 

~»dt 

dHz 

dx ~ 
dEy 
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Differentiation of Eq. 2.9 by x and 2.10 by t followed by the combination of the two 

gives: 

d2Ev d2Ev 

dx2      ^ dt2 

Equation 2.11 is the 1-D wave equation for a wave propagating with speed c = 

2.11) 

1 
fjle 

When JIQ and 80, the values of the permeability and permittivity for free space (a vacuum) 

are substituted, the wave propagation speed is found to be c = 3.0x108 m/sec - the speed 

of light in a vacuum, as expected. 

The solution of the wave equation above has the form 

Ey(x, t) = $le{A exp (-z'(ojr - be)} = A cos(©/ - be) 2.12) 

where A is the amplitude of the cosinusoidal wave, CO is the frequency, k is known as 

the wave number, t is time and x is location along the wave's path. 

This specific solution of Maxwell's equations for describing electro-magnetic phenomena 

implies a sinusoidal wave-like nature to light. Many aspects of light's behavior fit into 

this framework, and this description of a light field will be used to develop a theoretical 

description of electro-optic holography later in this chapter. 

2.2 Interference of two coherent light fields. 

While the solution above applies to the special case of linearly polarized light, a more 

general solution for other polarization schemes can be derived by similar arguments. The 
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conclusions of the more generalized argument show that any coherent light source will 

have some form of elliptically polarized output, where linear polarization is a special case 

in which the component of the light with polarization perpendicular to the linearly 

polarized wave is zero. In essence, any polarization can be described as the superposition 

of two orthogonally polarized components. Therefore, when two coherent fields 

intersect, only the parallel components from each of the fields will interact. 

One essential characteristic of sinusoidal functions is that the superposition of two 

sinusoids of the same frequency yields a third sinusoid, also of the same frequency, but 

with a different amplitude and phase from the two original waves as in Fig. 2.1. Thus, 

depending'on the relative phases of the two beams, the fields may interfere 

constructively, destructively or somewhere in between. That is, the amplitude of the 

resulting signal depends in part on the amplitudes of the original signals, but also, more 

importantly for holography, on the relative phases of the originals. This phase 

dependency of the resulting amplitude will be exploited in the development of the 

equations used to describe EOH later in this chapter. 
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(a) (b) (c) 

Fig. 2.1 - Two sinusoids of the same frequency, (a) and (b), but out of 

phase, combine to give another sinusoid of the same frequency but 

with a different phase and amplitude, (c). 

2.3 Laser Speckle. 

Most surfaces have some degree of roughness at the scale of the wavelength of light. 

This surface microstructure causes reflected light to diffuse and bounce in many 

directions, rather than simply mirror off the surface at an equal but opposite angle to the 

normal as the incident beam. A point in the image plane of the viewing apparatus (the 

retina or CCD imaging array) will receive light reflected from appropriately oriented 

microstructure facets anywhere within the solid angle subtended by the aperture of the 

imaging optics. Thus, a large number of rays with relative phases varying depending on 

the relative distances they travel all interfere at any given point on the receiver. Just as 

two sinusoidal signals of the same frequency interfere to create a new signal as shown in 

Fig. 2.1, a larger number of beams will show similar behavior. At some locations the 

interfering superposition of rays gives rise to constructive interference and the location 
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appears bright. At others, the superposition of the rays gives rise to destructive 

interference and the location appears dark. While the speckles appear to be randomly 

distributed over the surface, there is an inverse statistical correlation between average 

speckle size and imaging aperture size. Thus, for example, an increase in the f-stop of the 

optics which decreases the size of the aperture causes an increase in the size of the 

speckles observed on the surface. 

An EOH system uses a charge coupled device (CCD) based camera to capture images of 

parts illuminated with laser light. Ideally, one speckle corresponds to one element of the 

camera's imaging array. Then, the speckle pattern remains uniform as long as the optical 

system and test apparatus are stable. Even when the part undergoes small displacements, 

the speckle pattern continues to stay uniform, as long as the displacements are small 

compared to the dimensions of the portion of the surface imaged by a single pixel in the 

camera. This stability of the speckles is critical to the operation of an EOH system, as 

will be seen later. 

2.4 Coherent light, laser speckle and EOH. 

The optical front end of an EOH system looks very much like an ordinary holographic 

setup. The light from a very stable laser is divided into two portions called the object 

beam and the reference beam. The object beam illuminates the object of interest. As 

described above, the reflected light from the object contains light and dark speckles. The 

image of the object is recombined with the reference beam, and the two beams interfere at 

each speckle. 
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In order to understand the behavior of the system when the object is quiescent, consider 

one bright speckle in the object field. If the phase of the speckle and the phase of the 

reference beam at that point match, then the two fields interfere constructively and a large 

magnitude signal results. If the phase of the reference beam is subsequently incremented 

by half a wavelength (7t radians) then, at the same point, destructive interference occurs 

and a low magnitude signal results. When the second result is subtracted from the first, 

the magnitude of the difference is large. In operation, the EOH system samples the 

magnitude of the result from the two interfering beams at each pixel in the image created 

by the camera. The system digitizes and stores the first image, then changes the relative 

phase of the object and reference beams by 71 radians and digitizes the second image. 

Their difference is then computed and bright pixels are seen wherever the object remains 

stationary. 

To extend the example further, consider what happens if the surface illuminated by the 

laser moves before the system captures the second image. Now, again, the system 

introduces a n radians phase change in the reference beam relative to the object beam, 

but, the object has moved, so the path length of the object beam has changed. A change 

in path length results in a change of the phase of the object beam. If the object moves by 

exactly one quarter of the wavelength of the illuminating laser light, then the path length 

which the object beam travels becomes one half wave length longer. As a result, the 

phase of the object beam changes by 71 radians, as well. Now, when the two beams 

combine at the surface of the CCD camera's sensing element, the magnitude of the 
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interfering signals is again large. When the system computes the difference between the 

two signals, a small value results. Following this example further along, when the object 

moves by one half the wavelength of the laser, the phase change in the object beam will 

be 271 radians, so the difference between the two signals is large. This argument indicates 

that, where the object is stationary, the speckles appear bright in the computed output. 

Where the object has moved by a quarter wavelength, the speckles appear dark. Where 

the object has moved by a half wavelength, the speckles appear bright again. So, the final 

result of the difference between the two images taken with a phase shift of n radians in 

the reference beam has alternating light and dark bands on the surface. Each point of the 

surface covered by a band has moved by nearly the same amount. These bands are 

commonly referred to as interference fringes or fringe loci. 

To improve the system's performance, the subtraction operation is also performed on a 

second pair of images whose phase difference vector is orthogonal to the phase difference 

vector of the first pair, as plotted in a polar phase angle versus phase magnitude plot. 

Given the magnitude of the phase difference along two orthogonal axes, regardless of the 

phase orientation of the phase vector of the speckle, the square root of the sum of the 

squares of the magnitudes of the two phase difference vectors gives the modulation 

magnitude ofthat speckle. That is, by subtracting images taken at reference beam phases 

of 0 and 7t radians to produce a measure of the modulation along one vector, then 

subtracting images taken at reference beam phases of nil and 37t/2 radians to produce a 

measure of the modulation along a second, orthogonal vector, then taking the square root 
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of the sum of the squares, the magnitude of the modulation is recovered, regardless of the 

absolute phase angle at that speckle. 

2.5 Electro-optic holography system components. 

The EOH system is composed of: 1) fixturing to hold and stress an object, 2) an optical 

front end, 3) an image processing subsystem and 4) a host computer to act as the system 

controller. 

2.5.1 Fixtures. 

For time average holography, the object of interest must be clamped firmly to a support 

structure that maintains the object-to-interferometer distance to within a fraction of a 

wave length of the laser light, but also provides the means to induce small vibrations of 

known frequency in the object. Two methods are common for coupling the driving signal 

to the object: 1) Clamp the object firmly by its base, then induce vibration with a speaker, 

or 2) clamp the object directly onto a piezo electric transducer (PZT) which will shake the 

entire object with a very small amplitude signal. In either case, a small amplitude driving 

signal is coupled to the part so that the part undergoes measurable displacement due to 

vibration only when the signal's frequency matches a resonant mode of the part. When 

the frequency matches a resonance, the coupling efficiency increases greatly and the 

structure vibrates sympathetically. 
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2.5.2 Optical system. 

The optical system, as shown in Fig. 2.2, consists of a laser, mirrors, a PZT mirror mount, 

beam expanding lenses, an imaging lens and a CCD camera. The coherent light beam 

generated by the laser is split by a partially transmissive mirror, into two portions, the 

object and tho reference beams. The object beam is diverged sufficiently to illuminate 

the entire object, then the image is focused onto the CCD camera sensor by the imaging 

lens. Meanwhile, the reference beam is diverged and recombined with the object beam at 

a second partially transmissive mirror immediately in front of the camera. When the two 

beams intersect, the coherent light fields interfere. The CCD camera integrates the 

intensity of the resulting light field over each ^th second frame time. The image from 

the CCD camera is then fed to the image processor. 
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Fig. 2.2 - Electro-optic holography system block diagram. 
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2.5.3 System electronics. 

An NEC black and white CCD camera with gamma correction and automatic gain 

disabled provides RS-170 format video input of the interfering beams at 30 frames per 

second. To process the image data generated by the camera, the system uses an MV200 

image processor from Datacube. The MV200 occupies two VME slots and includes 

24MB of image memory, a video analog-to-digital conversion subsystem, a display 

subsystem which supports the X-Windows environment with live video display inside 

windows, numerous ALUs, multipliers, shifters, clippers and sign extenders, an 8x8 

convolver, a 16-bit lookup table and a 32 channel cross-point switch which allows 

software control of the configuration of these elements. The image processor is 

controlled by a Motorola MVME167 single board computer based on a 68040 CPU. A 

digital function generator provides precise control over the driving signal for exciting the 

part. 

2.6 Mathematical description of holograms. 

The mathematical description of the interaction of two coherent planar light fields can be 

derived from the solution to Maxwell's equations given in Eq. 2.12. Either one of the two 

beams individually can be modeled by 

Fix, v, 0 = *e{A(x, v)exp [-i(©f - <p(x, y)]}   , 2.13) 
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a complex light field where q>(r, v) expresses the phase of the light field at every point in 

the plane, A describes the amplitude and co is the frequency. We assume that the light is 

coherent which implies only one frequency and uniform phase. 

2.7 Static mode data acquisition. 

In static mode, the EOH system generates a hologram whose fringes indicate static 

deformation of the surface of the object6. To produce these results, two sets of images 

are captured, with the state of stress changed between the two. Each image set is 

composed of four frames, where a phase increment is added to the reference beam 

relative to the object beam between each frame in the set'. 

The two beams which interact at the beam combiner can be described by 

F0(x,y) = A0Qc,y)extii<p0(x,y)] 2.14) 

and 

Fr(x,y) = Ar(x,y)exrti<?r(x,y)]    , 2.15) 

where F0 and Fr represent the object beam and the reference beam, respectively. 

When the two beams interact, the intensity measured at the CCD array of the camera is 

given by the complex magnitude of the sum of Eqs 2.14 and 2.15, that is, 

I(x,y) = Xe{ [F0(x,y) + Fr(x,y))[F0(x,y) + Fr(x,y)]'} 2.16) 

B-34 



For the following simplification of Eq. 2.16, the field amplitudes A and phases <p are each 

a function of x and y, but the arguments are omitted for greater clarity. So, 

/= 5He{[^0exp(z'90)+y4rexp(/(pr)][^0exp(-/(p0)+^rexp(-z(pr)]} 

= 3He{Al +A2 +^o^r[exp(z(p0)exp(-/(pr) + exp(-/<p0)exp(z'(pr)]} 

= *Re{Al +A2
r +^r{expp(q>« -q>r)] + exp[-z(cp0 -cpr)]}}. 

Now, let Acp = <p0 - cpr. Then 

/= Me{Al +A2
r +/40y4r(cosA<p + z'sinA(p + cosA<p-zsinA<p)} 

= Äl+Al+2AoArcos&q   . 

Restoration of the x and y arguments and substitution of I0(x,y) = A l(x,y)  and 

Ir(x,y)=A2(x,y)  gives 

I(x,y) = Jo(x,y) + Ir(x,y) + 2A0(x,y)Ar(x,y)cos Acp(x,y)    . 2.17) 

Equation 2.17 represents the pixel intensities of a frame of data captured by the image 

processing system prior to the introduction of phase shifts. 

In the following discussion, the x andy arguments of the functions are again dropped to 

simplify the mathematical formulation, and constant factors from Eq. 2.17 are grouped so 

that C = I0 + Ir and D = lA^. A phase step of n/2 is introduced between frames of video 

data by translating the PZT mounted mirror to a new position such that the path length of 

the reference beam is exactly one quarter wavelength shorter. Then a four image, phase 
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stepped set of reference images captured prior to the deformation of the object can be 

described by the following set of equations: 

I\ = C+Z)cosAq>, I2 = C+DsinAy , 

h = C-DcosA(p and I4 = C-DsinAq>. 2.18) 

The set of images captured after the deformation can be described by four more 

equations: 

Jf
1 = C + D'cos Aq>', J,

2 = C + DfsmAq>', 

/3 = Cf-D'cosAtp'and fA = C-D'smAy'. 2.19) 

The deformation must be small enough so that the speckle pattern does not decorrelate, 

and the experimental environment must be stable so that random fluctuations of the phase 

are held to a mmimum. Assuming these conditions to hold, then C' »C and Z)' «D . 

Now, the following combinations of the eight images represented by Eqs. 2.18 and 2.19 

can be constructed: 

P\ = [(/i -h) + (A ~/3)]
2 = [2DcosAcp + 2DcosA(p/]2 , 2.20) 

Pi = Kh -U) + (/2 -/4)]
2 = [2DsinAcp + 2£>sinA(p/]2 , 2.21) 

Pi+P2 = BD2 + 8Z)2cosAcpcosA(p/ + 8Z)2sinA9sinA(p/, 2.22) 

and 

^3 = [(/i - h) - (75 -4)]2 = [2D cos Ay-2D cos A<p']2 , 2.23) 
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PA = [(/2 -IA) - (/2 - ^)]2 = [2D sin Acp - 2D sin Ay']2 , 2.24) 

-P3 -PA = -%D2 + SD2cos Acp cos Aq/ + 8Z)2sin Acp sin Aq/ . 2.25) 

From Eqs. 2.22 and 2.25 

Pi +P2-P3 -PA = 16£>2(cosAcpcosAq/ + sinAcpsinAcp/) 

= 16£>2cos(Acp - Acp') . 2.26) 

Next, let Q = Acp - Aq/. Then 

16Z)2cosQ = Pi+P2-P3-P4 

= [(7,-/3) + ^-/3)]
2 + [(/2-74) + (/2-/4)]

2 

-[(/I-/3)-(^-/3)]
2-[(/2-/4)-(/2-/4)]

2 .       2.27) 

By a similar procedure, a second result proportional to the sine of the phase difference 

can be generated from the eight images in Eqs 2.18 and 2.19: 

Q\ = [<7i -h) + (f2 -
//

4)]2 = [2£>cosAcp + 2Z)sinAq/]2, 

Q2 = [(/2 - I A) + (ii - /3)]2 = [2D sin A<p + 2D cos Aq/]2, 

Q\ + Q2 = 8£>2 + 8D2cos Acpsin Aq/ + 8£>2sinAcpcos Aq/, 

2.28) 

2.29) 

2.30) 

and 

03 = [(/1 -/3)-(/2 -/4)]
2 = [2/J>cosAq>-2/J>sinAq/]2, 

QA = [<72 - U) - (/, - /3)]
2 = [2D sin Acp - 2D cos Aq)']2, 

-Ö3 - g4 = -8D2 + 8£>2cos Acp sinAq/ + 8D2sin Acpcos Aq/, 

2.31) 

2.32) 

2.33) 
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From Eqs 2.30 and 2.33 

Q\ +Q2 -Q3 -QA = löD^cosAcpsinAcp' + sinAcpcosAq/) 

= löZ^sinCAcp-Aq/) . 2.34) 

Finally, 

16D2sinn = Q]+Q2-Q3-QA 

= [(/1 ~h) + <f2 -/4)]
2 + [(/2 -/<) + (fx -/3)]

2 

-[(/. -/3)-(/2-/4)]
2-[(/2-/4)-(/; -/3)]

2 .     2.35) 

So, to summarize, the two equations 2.27 and 2.35, composed of combinations of the 

eight operands described by Eqs 2.18 and 2.19, can be formed which, when simplified, 

yield results proportional to the sine and cosine of the difference in phase between the 

light field prior to the deformation and the light field subsequent to the deformation of the 

object under observation. 

The measured change in phase due to the deformation, Q\ can then be found from the 

inverse tangent of the ratio of Eqs 2.35 and 2.27 as 

Q'-—-(SS) • "« 

where Q is referred to as the fringe-locus function, constant values of which define fringe 

loci on the object's surface. 
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Notice that, due to the arctan function, the measured phase difference function, Q\x, y), 

wraps back to zero each time the actual phase difference function, Cl(x,y), passes through 

(2N- l)n, where N is an integer. These discontinuities must be removed by the phase 

unwrapper to reconstruct a continuous phase function from which actual displacement 

values can be computed. 

Figure 2.3 shows a pair of sinusoidal signals with a rc/2 phase offset between them, along 

with the wrapped phase which results from applying the arctan to their ratio. 

Wrapped phase of the inverse tangent function 

1111111111 1111) 111111M 1111111111111111111111 M 1111111 n 111 

0X6 063 1.19 1.76 232 289 346 «J02 4.59 6.15 5.72 678 

Phase (Radians) 

- Cosine (phase) -o Sin (phase) ~x— Arcnn (Sin (phase) /Cosine 
(phase)) 

Fig. 2.3. Wrapped phase obtained by solving for the phase given 1-D sine and cosine 

functions as input. 

2.8 Time average mode data acquisition. 

In time-average mode, the EOH system generates a hologram whose fringes indicate the 

amplitude of vibration of the surface of the object6. To produce these results, one set of 
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images is captured as the test part undergoes sinusoidal vibration in a standing wave 

pattern - a resonant mode. The image set is composed of four images, where a phase 

increment is added to the reference beam relative to the object beam between each frame 

in the set 2<\ 

2.8.1 Measured intensity modified by the characteristic Bessel function. 

From the solution to Maxwell's equations, the two beams which interact at the beam 

combiner can be described by 

Fo(x,y)=A0(x,y)exp{i[(p0(x,y) + K(x,y)»L(x,y)sm(ot]}    and       2.37) 

Fr(x,v)=^r(x,v)exp[/(pr(x,v)]   . 2.38) 

Equation 2.37 describes the time varying object beam, and Eq. 2.38 describes the 

reference beam light field which does not vary with time. The second term in the 

exponential of Eq. 2.37 describes the time dependent variation of the phase of the object 

light field which results from the sinusoidal motion of the object at frequency co. The 

vector K denotes the sensitivity vector which bisects the angle formed by the illumination 

and observation vectors. The vector L denotes the displacement of the object for each 

point in the image. The sinusoidal term accounts for the motion of the object over the 

interval during which the camera integrates light to collect a frame of data. Figure 2.4 

shows the geometry of the incident beam and a test part. 
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Fig 2.4 - Geometry of incident and reflected light with a moving surface. 

When the two beams interact, the intensity measured at the CCD array of the camera is 

given by the real part of the time-average of the complex magnitude of the sum of the 

beams' electric fields defined by Eqs 2.37 and 2.38, that is, 

I(x,y) = Xe- 1 \[F0(x,y) + Fr(x,y))[F0(x, v) +Fr(x,y)Ydt      .        2.39) 

Equation 2.39 is expanded and the x and y arguments are dropped for clarity to give 

I = 9?e{ - J[y40exp(/[cp0 + K • L sin co/]) +^rexp(zcpr)] 

[A0exp(i[(po + K> L sin cor])+y4rexp(/(pr)]<fr} 

i 

= ${e{Al +A? + j, j^o^rexp[/(cp0 - cpr + K • L sin ©/)]<# 

+-^ |^a^rexp[-z'((p0 -cpr + K • Lsin(ot)]dt}.      2.40) 

Substitution of Acp for cp0- cpr allows the simplification of the exponential terms to give 
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r= Ke{Al +A> + AoA*&-m Jexp[/(K m L sma>t)]dt 

T 

+ Jr       J exp[-f(K • L sin(ot)]dt} 2 Al) 

Finally, taking the real part of Eq. 2.41 gives 

I=Al +A? + 2A oArcosA<p - Jcos[K«Lsinco/]^ 2.42) 

The integral at the end of Eq. 2.42 is often referred to as the characteristic fringe function 

and denoted by M[Q]8. In general, 

gn - J cos[K • L sin(üt]dt = J0[Q] 2.43) 

is a zero order Bessel function of the first kind, where Q(x,y) = K(x,y) • L(x,y) . For 

time-average holography, where the integration period, T, is the frame time of the camera, 

the characteristic fringe function will be J0[Q(x, y)] when <o«T, that is, as long as the 

period of the vibration of the object is much smaller than l/30th of a second. In practice, 

frequencies of 60 Hz and higher give good results. 

2.8.2 Time average image capture. 

For the remainder of the discussion constants in Eq. 2.42 are grouped so that 

C=I0 +Ir = Al +A* and D = lAoAr. Once again, a phase step of n/2 is introduced 

between frames of video data. Then, a phase stepped set of four images as captured by 

the image processor can be described by the following set of equations: 
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11 = C+DcosA(pJQ(Q) , I2 = C+DsmAqJ0(ty , 

I3 = C-DcosA<p/0(ß)   and I4 = C-DsinAcfx/o(Q) • 2.44) 

The deformation must be small enough so that the speckle pattern does not decorrelate. 

Then, all the C's and all the £>'s in Eq. 2.44 are equal and the four equations can be solved 

to eliminate C and A<p yielding 

/*, = (/, -h)2 + (h -h)2 = 4D2J2
0(C1). 2.45) 

According to Eq. 2.45, the resulting hologram, //,,, is defined in terms of three unknowns, 

Al and A2 comprising D2, and Q contained in the argument of the J0. In order to solve 

for Q, two additional equations must be generated in such a way that the three unknowns 

are related in three equations. This is accomplished by introducing a bias signal on the 

reference beam to shift the Bessel function fringe pattern by a known amount, first to one 

side, then to the other side of the unbiased fringes. The following section describes a 

mathematical model for the phase bias. 

2.8.3 Bessel function behavior. 

The phase of the bias signal can be matched to the phase of the vibrating part by a 

calibration procedure which finds the peak power in the fringes shown in the image 

where a bias signal is applied. This approach is validated by the following 1-D model for 

the image fringe function. 
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The object undergoes sinusoidal vibrations and the light from the vibrations is integrated 

by the camera to generate the Bessel fringes as explained above. This process can be 

modeled by 

Kx) = i Jexp[-ixsin(a>/)ji/ , 2.46) 

where the image intensity / is a function of the position x. As x varies, the intensity value 

sweeps out a zero order Bessel function of the first kind as shown in the graph in Fig. 2.5. 

The varying x value corresponds to increasing amplitude of the sinusoidal vibration 

across the surface moving away from a nodal line at x = 0. This varying amplitude term 

is represented by the x multiplier preceding the sinusoidal term in the integral. 

Fig 2.5 - One-dimensional Bessel function squared. 

Now, when a second signal of the same frequency but different phase contributes to the 

function, the model expands to 

I(x, §) = j Jexp(-;[sin(©f+<j>)+xsin(cor)]>fr . 2.47) 
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Now / depends on both x and <j>, so a 2-D graph will show how the function varies with 

changing amplitude along the x axis and how the function varies with changing relative 

phase of the two signals along the <|> axis. Figure 2.6(a) shows the 2-D surface plot of I. 

Notice that there are peaks in the zero order fringe where the phase of the two signals are 

exactly in or out of phase. Also, the amplitude of the remaining fringes stay constant 

regardless of the relative phase. This suggests that a calibration routine which detects the 

peak image energy as the relative phase is changed will find the phase value where the 

two signals are perfectly in or out of phase. 

Jfe# I(xA) 

(a) (b) 

Fig. 2.6 - Surface plots of fringe intensity as a function of displacement in 

x versus relative phase in (a) and versus bias amplitude in (b). 

When the two signals are perfectly in or out of phase, Bessel fringes will still be seen in 

the image. Now, when the amplitude of the bias signal varies, the location of the peak of 
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the zero order fringe will vary, without otherwise affecting the shape of the function. 

This is illustrated by the modeling the intensity by 

I(x,A) = j fcxp(-i(Asm((ot)+xsm((i)t))dt  , 2.48) 

where / is now a function of x and A - the amplitude of the bias signal. A surface plot in 

Fig. 2.6(b) with x along one axis and ,4 along the other shows the effect of varying the 

amplitude of the bias signal. 

A phase bias can be introduced in the fringes in a hologram by changing the path length 

of one of the two beams relative to the other with a second signal of the same frequency 

as the excitation signal, but with variable phase and amplitude. Appendix A shows the 

MathCad model used to investigate the behavior of the Bessel function. 

2.8.4 Solution for unambiguous phase. 

As discussed earlier, a set of three equations is required to solve for the three unknowns 

in the equation which describes the hologram images. A bias signal with an amplitude 

denoted by B, and phase such that the phases of the two beams are identical at the camera, 

adds a new term to the expression which describes the reference beam so that 

FNr=Ar(x,y)exp{i[q>r(x,y)+Bsm((of)]} - 2.49) 

where the subscript N indicates the negative biased beam and the small subscript r is used 

to denote the reference beam. 

B-46 



Equation 2.49 represents the electric field of the reference beam modulated by the 

sinusoidal bias signal for the first of the two biased results called the negative biased 

hologram. The biased reference beam interacts with the object beam represented in Eq. 

2.38 to give an intensity at the camera of 

IN = [F0+FNr][F0+FNry 

= Al+A„r+2AoANrcosAy<^lcos[(£»L-B)smat]dt>   .     2.50) 

A set of four phase stepped images derived from Eq. 2.50 and identical to Eq. 2.44 except 

for the bias, is captured. The negative biased hologram is computed from these four 

images as 

h2=4D2J2
0(Q-B)=(/*, -iNy+(iNl -iNiy 2.51) 

The third result, called the positive biased hologram, is generated by changing the phase 

of the bias signal by 180°. Then, the reference beam can be represented by 

FPr =Arexp{i[$r+Bsm((ot + Tc)]} = ^rexp{/[<j>r-i?sin(o>/)]} 2.52) 

where the subscript P indicates the positive biased beam and the small subscript r is used 

to denote the reference beam. The positive biased reference beam interacts with the 

object beam in Eq. 2.44 to give an intensity at the camera of 

IP = [F0+FPr][F0+FPry 

= Al +A2
Fr +2AoAPrcos Acpj -^ Jcos [(K• L,+B)sm(ot]dt 2.53) 
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Again, the positive biased hologram is computed from a set of four phase stepped images 

derived from Eq. 2.53 to give 

/*, = 4D2J2
0(Q+B) = (IPl -lPf+(IP2-IPtf 2.54) 

Now we have three equations, given by Eqs 2.45,2.51 and 2.54, written in terms of the 

three unknowns. The exact solution for Q is not simple since the Bessel function is both 

nonlinear and non-periodic. However, an approximate solution is possible if the fringe 

function is assumed to be a cosine squared rather than a Bessel function squared. This 

assumption introduces errors in the computed results, but these errors are directly 

dependent on the computed phase value and can be corrected after the phase is 

unwrapped by indexing into an appropriate lookup table (LUT). 

To solve for the phase, first approximate the Bessel function squared in Eqs 2.45, 2.51 

and 2.54 with the cosine squared: 

Ihl=SD2cos2(Q + B), 2.55) 

h2 = 8£>2cos2(p)    and 2.56) 

Ihi=SD2cos2(Q + B) . 2.57) 

The cosine squared can be replaced by the use of trigonometric identities to give 

Ih] =4D2 + 4D2cos(2Q + 2B) = 4D2 +4D2cos2Qcos2B-4D2sm2Cism2B,    2.58) 

h2 = 4D2 + 4£>2cos 2Q    and 2.59) 

Ih =4D2+4D2cos(2Q-2B) = 4Z)2+4Z)2cos2ficos25 + 4Z)2sin2Dsin25.   2.60) 
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So 

7*3 - Ih, = SZ^sin 2Q sin IB   and 

Hh2 -Ihi-Ihl= 8Z)2cos2Q-8D2cos2Qcos2B 

The ratio of Eqs 2.61 and 2.62 gives 

hj -h, 

2Ih2~hi -hi 

2.61) 

2.62) 

= (r*^) ^ = (T^2^) t^ 2Q - 2.63) M-cos2B/cos2ft    M-cos22?>' 

Now, the term containing the phase can be isolated as 

tan2Q=f1-cos2^)     h>~h> 
y   sm2B   J2Ihl-Ih3-Ih 

2.64) 

The solution for the phase at each point, assuming the hologram contains cosine squared 

fringes is therefore 

Q = - arctan 
2 

(\-oa&2B\     hj-hj 
V   sin25   J2Ih-h-L 

2.65) 

Notice that, similar to static mode, values for the solution wrap back to zero each time the 

argument of the arctan function passes across a (2N- 1)^ boundary, where N are integer 

values. These discontinuities must be removed by unwrapping the phase to build the 

continuous phase function required to perform the correction and subsequently compute 

actual displacement values from the data. 

The unwrapped Q values thus computed are corrected by indexing into an LUT generated 

by finding the inverse mapping to translate from the phase found assuming cosine 

squared fringes to the correct phase resulting from Bessel squared fringes. To build such 
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an LUT, first an array is filled with values corresponding to a sampled set of all possible 

values that the processed data may take. Such an array can be computed by 

LUT(QB) = ^aTctan 
( sin25   J24(QB)-Jl(ClB+B)-J2

0(QB-B) 
2.66) 

Second, the LUT must be inverted to map from the assumed cosine squared fringe 

domain to the actual Bessel squared fringe domain. Values for the correction LUT are 

computed at points separated by a fixed interval in the Bessel phase argument, QB. When 

the LUT is inverted, the intervals between LUT entries are no longer uniform, so care 

must be taken that an interpolation procedure computes the new values for the inverse 

LUT at regular intervals in the inverse domain. The inverse LUT is denoted by 

LUT\£lB). 

The correction is applied after the phase is unwrapped to compute the actual phase of the 

Bessel squared fringes, Qc, and takes the form of 

fic = iW1(ßi) 2.67) 

at every point in the image, where the i subscript indicates that the value of the 

uncoirected phase is quantized, then used as an index into the correction table. 

Finally, the actual displacement of the surface under observation can be calculated from 

the phase by 

L = 
2w(K2-K,) 

Ifll, 2.68) 
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where L is the displacement, X is the wave length, K2 is the observation vector and K] 

is the illumination vector \ 

The upper left image in Fig. 2.7 shows models for three biased Bessel functions with the 

wrapped phase overlaid. The correction LUT over the same range is shown in the upper 

right image. The corrected unwrapped data for a low noise case is shown in the lower left 

and an inconsistently unwrapped phase where large noise was artificially added to the 

model is shown in the lower right. 

tttttl Functions fc Wfrappod Lookup T«b*« 
DUptacatnwits 

Correction Lookup Tcbta 

(a) (b) 

Comput»d Displacamant Compared 
to Actual Starting Data 

MOCO 

Result Surtac« with Unwrapping Error 
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140.00 tXLDD ^t***^^ 
taue »> 
waso 

«. 

Oi »          IM*          XBt          «-»•          UO          ill           )A          U          M          ID <U JO          IM          U          <Ji          UO          «S2           7X1          U          ft«           U3 
Phm* *•*•"• 

(c) (d) 

Fig. 2.7 (a) Model of the three biased Bessel function fringes with the wrapped phase 

overlaid, (b) Model of the correction LUT. (c) Model of the phase recovery process 
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where fringes were synthesized based on a model surface, noise was added, then the 

wrapped phase was computed and finally unwrapped to recover the original phase, (d) 

The same model in another run in which the random errors of 5% of the signal strength 

were sufficient to confuse a simple nearest-neighbor 1-D phase unwrapper. 

2.9 Energy Minimization. 

The next sections give a brief overview of energy niimmization techniques as applied to 

image processing problems. Those aspects of energy rmnimization approaches which 

pertain to the phase unwrapping problem are emphasized. 

2.9.1 Image model 

For the purpose of the phase unwrapper, the image is modeled as a Markov random field 

(MRF). An MRF model of the image implies that each pixel's probability distribution 

depends only on a finite set of discrete neighbors. Locations outside of the range of 

influence for a pixel may still have an effect on that pixels probability distribution, 

though, by influencing the pixel's neighbor's values. However, by making the 

simplifying assumption that the sampled data can be modeled by an MRF, each pixel's 

value can be computed as a function of the nearby pixels within the pixel's neighborhood. 

This assumption implies that the values of pixels near each other are more likely to be 

related than the values of further separated pixels. An MRF corresponds directly to a 

Gibbs distribution - a description of the interaction potential energy among subsets taken 

from the set of a pixel's neighbors9. 
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2.9.2 Neighborhoods for processing image data. 

Geman and Geman use the formalism of an MRF as the basis for the development of a 

simulated annealing algorithm for image labeling. To compute the new label for a given 

pixel, sets of the pixel's neighbors called "cliques" are built. The cliques which 

contribute to a pixel's new value are culled at the borders of the image so that undefined 

areas are ignored. For the purpose of image labeling, these cliques are each two or three 

pixels in extent and the interaction potential within each group provides the energy metric 

which the annealing process seeks to minimize. 

For phase unwrapping, a related, but slightly different definition of a neighborhood is 

used. Each pixel's neighbors are considered to be those pixels which have previously 

been visited by the unwrapper so that they contain valid phase data. As the unwrapper 

serially visits new pixels, some subset of the pixels neighborhood will contain pixels 

which have previously been processed. This subset can be trimmed at the borders to 

avoid the inclusion of undefined points beyond the edge of the image. By assuming the 

image model to be an MRF, the neighborhood of pixels which can influence the current 

pixel's value is limited, so computationally tractable groups of pixels can be considered 

when each point is visited. 

2.9.3 Edge labeling. 

The Geman and Geman model for image labeling also incorporates edge segments which 

he between pixels. Any pair of pixels may have an edge between them which cuts their 

connection. When a connection is cut, the potential of neighborhoods containing the pair 
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takes a new, lower energy value representative of the fact that the two points are now not 

associated. Edges are inserted or removed at each processing iteration depending on the 

energy of the neighborhood. If the introduction of an edge increases the probability of an 

arrangement, then the edge remains. In order to avoid the degenerate case where edges 

are introduced between every pair of pixels in the image, a cost is associated with each 

edge. As a result, edges persist only where very high potential differences are found in 

the image. 

The current implementation of the phase unwrapper does rudimentary edge detection 

based on a pixel by pixel reliability metric. While this strategy is effective at.defining 

gross borders, it does not take advantage of a priori assumptions of smoothness along 

borders. With the introduction of edge elements in the facet based strategy, lowest cost 

edges, that is, straight, smooth edges, could be found by extension of the facet model to 

minimize fitting error iteratively. Such an extension of the algorithm would also help to 

provide a mechanism for detection of internal edges within an object. 

2.9.4 Energy definitions for labeling and phase unwrapping. 

The energy minimization model introduced by Geman and Geman provides a framework 

for the definition of neighborhoods based on the radius of influence in an MRF. For the 

labeling problem, energy minimization implies the delineation of uniform regions in the 

presence of noise. Uniform regions are characterized by the lack of large gray level 

transitions, just as carefully annealed metal is characterized by the existence of uniformly 

high potentials in the bonds between particles in the material. To build uniform regions 
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in images, the annealing algorithm creates flat surface segments with very small gradients 

where the more uniform the gradient, the higher the potential. This is accomplished by 

maximizing the probability of the state described by the configuration of the MRF given 

the observed image. The probability function for any given configuration depends on the 

exponential of the negative of the energy, that is 

P = exp(-£/7)/Z, 2.69) 

where E is the potential energy, 7" is a parameter analogous with temperature which 

controls the annealing schedule and Z is a normalization term. The probability of a 

particular state of the MRF given the observed image then has a potential function which 

depends on the difference between the predicted MRF and the observed data as well as on 

the potential over the neighborhood. 

For their labeling scheme, Geman and Geman define the potential of cliques by a few 

different methods. In each, the potential of pixel pairs with the same value is a constant, 

while various configurations of edges are assigned varying influences on the potential of 

the entire clique. As their system converges, areas which are not separated by an edge 

grow more uniform. The potential energy, E, is approximated by 

ceC 
2.70) 

where C is the set of all cliques in the neighborhood which are not split by an edge, and 

Ki is one of a set possible values of the potential depending on the edge site configuration 

and the data values in the clique. The value of Kt is zero if the pixel values in the clique 
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are not equal. Using this processing model, as the potential of a particular neighborhood 

increases, the uniformity of the surface increases, so the probability of the given 

configuration also increases. This force toward uniformity is balanced by a second term 

in the probability expression which depends on the difference between the observed data 

and the predicted data contained in the MRF model. The greater the difference between 

the model and the observed data, the lower the probability for the proposed configuration 

of the MRF model. When the process converges, the two forces are balanced. 

To recover the original displacement of a surface from the wrapped phase computed from 

a set of holograms, a different set of suppositions hold. While the surface can be assumed 

to be smooth and planar over local neighborhoods, it cannot be assumed to have zero 

gradient as is implied by the conditions imposed on Eq. 2.70. Instead, the surface may be 

tilted, with a maximum gradient, IMmGrad, defined by the minimum fringe spacing Which 

can be resolved in the presence of laser speckle. In this case, the definition of potential 

energy must be altered so that the potential is maximized when the surface to recover 

diverges least from the best fit plane determined by the surface. That best fit plane is 

allowed to have a gradient value bounded by ±IUaiGrad along both the x and v axes. To 

define such a potential function, Eq. 2.70 still holds, but a different set of conditions are 

applied. This time, C is the set of all cliques in the neighborhood and edges are not taken 

into consideration, only the neighborhood configuration. The value of Kf is then 

determined solely as a function of the sums of the data values with their corresponding 

fringe numbers in the neighborhood, such that Kt has a constant positive value for 
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configurations of cliques which are coplanar. The value ofKt is zero if the pixel values in 

the clique are not coplanar. Clearly, two and three element cliques always pass this test, 

so cliques of four or more would have to be considered when applying this test for 

evaluation of the potential. 

2.10 Facet based estimation. 

Haralick uses a least squares error minimization procedure for fitting parameterized 

surfaces to noisy data,0. Once a surface has been parameterized, interesting 

characteristics of the surface can be extracted based on the computed parameter values. 

The fitting model uses a set of orthogonal polynomials as a basis set for the fit. The 

minimization procedure finds values for the coefficients of the polynomials. 

Haralick uses his facet model fitting procedure for finding the best edges in an image. 

For this purpose, the polynomial set contains elements up to third order. Thus, his fitted 

surface is always a third order function and the best edge is then found at the point of 

inflection on the steepest slope. Furthermore, his neighborhood is defined to be 

symmetrical about a central point, so an orthogonal polynomial basis set can be found. 

The use of an orthogonal basis set allows many computational simplifications in the least 

squares error minimization procedure. 

For the purpose of phase unwrapping, the facet model provides a framework for 

computing an estimate of the phase value of the central pixel in a neighborhood. 

Complications arise from the lack of complete data within each neighborhood as 
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processing progresses. The process moves serially through the data tracing out a spiral 

moving outward from the point chosen to be the starting point or "seed" of the operation. 

As a result, at each new point, only those points within the neighborhood which have 

been previously visited by the spiral can contribute to the facet's parameter estimation. 

Therefore, the estimate must be applied to an arbitrarily populated neighborhood. Under 

such conditions, no general orthogonal basis set exists to address every possible 

configuration of weights. This introduces greater computational complexity in the least 

squares fitting procedure since a square matrix of dimension equal to the number of 

polynomial coefficients must be inverted to solve for the coefficient values. 

Wrapped phase EOH images contain certain characteristics which can be used to simplify 

the problem. The phase can be assumed to change smoothly over the surface of the 

object as long as the object does not contain surface discontinuities. Such smoothness 

implies that the surface deformation due to stress will be continuous. Furthermore, in a 

local neighborhood in the image, the influence of the stress only changes slowly. Again, 

this follows from the nature of the mechanical system under observation. That is, the 

object reacts to stress in such a way that the interaction potential of the bonds from 

particle to particle in the material remains rninimized, which implies that the surface 

deformation will be smooth and continuous, as long as fractures do not appear. Given 

this assumption, the facet estimator within a local neighborhood can generate a valid 

estimate by fitting a planar surface patch to the neighborhood data. A planar surface can 

be parameterized with three coefficients of a first degree polynomial. The solution for the 
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coefficient values then requires the inversion of a three by three matrix. Such a matrix 

can be inverted directly without incurring undue computational complexity. 

Haralick's facet model provides the framework used in the estimation procedure for 

finding discontinuities in phase data within local neighborhoods. The definition of 

neighborhoods follows from the framework established by Geman and Geman for 

applying the concept of an MRF to the image labeling problem. These two ideas prove to 

be central in the development of the phase unwrapping algorithm described in Chapter 4. 
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Chapter 3. Previous approaches to phase unwrapping. 

Numerous previous approaches have been applied to the phase unwrapping problem. 

Most have been variants of the simple row-wise or column-wise sequential unwrapping 

approach. The following sections briefly describe notable work from the existing 

literature. 

3.1 Basis for two dimensional unwrapping. 

An analysis of both one dimensional and two dimensional unwrapping is provided by 

Itoh ' . The premise of the two dimensional approach is to unwrap along one row and 

then along all the columns, or along one column and then along all the rows. Itoh proves 

that 1-D wrapped phase can be unwrapped by integrating wrapped discontinuities in a 

sweep through the data. The extension to 2-D shows that unwrapping can proceed either 

in row / column or column / row order. 

While Itoh's approach is theoretically valid, it makes no allowance for the noise inherent 

in any imaging system. With the scan line approach, any mis-assignment propagates to 

all dependent locations. This results in streaks or discontinuities in the unwrapped phase. 

This approach also fails for arbitrary shapes, since it relies on the existence of at least one 

row or column which covers the full width or height of the bounding rectangle of the 
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object. Furthermore, any discontinuities in the phase will not be recognized, so edges or 

boundaries within an object will be glossed over with unpredictable results. 

Numerous phase unwrappers have been based on the sequential scan method explored by 

Itoh 12,13. Each of these approaches exhibits the same weakness of having high 

sensitivity to noise. Since EOH generated images tend to be highly influenced by 

systematic noise, a more robust method of phase unwrapping is required for this project. 

3.2 Irregular shapes. 

Stetson proposed an approach to the phase unwrapping problem which works for 

arbitrary shaped objects, provided a "mask" can be generated which segments the object 

of interest from the backgroundI2. By this approach, the unwrapping progresses along a 

path around the interior of the border of the object. Unwrapping proceeds sequentially 

around this path until a dead end is encountered, or the object is filled completely. If an 

impasse is reached, the routine searches for the upper left-most pixel which has not yet 

been unwrapped, and restarts the scan around the interior border of unprocessed pixels. 

While Stetson's approach solves the problem of processing arbitrary shapes (assuming the 

shape is known), it still suffers from susceptibility to noise since only two pixels are 

considered in each decision about whether to introduce a discontinuity at a given point. 

Also, the spiral processing path works inward from the perimeter where data are most 

likely to be ambiguous in time average holograms since higher order fringes of the 

squared Bessel function fringe distribution will be found at the free boundaries of the part 
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under observation. As a result, the likelihood of creating inappropriate discontinuities 

increases. Once an erroneous discontinuity is introduced, it propagates through many of 

the remaining interior points. 

3.3 Cellular automata. 

Ghiglia, Mastin and Romero implemented a system based on cellular automataI5. By 

their approach, each pixel location is updated according to its neighborhood's 

accumulated strength-of-vote. The strength-of-vote for each neighbor is computed from 

the phase difference of the center pixel versus the neighbor. If the absolute value of the 

accumulated strenth-of-vote is > n, then add or subtract 2n in the direction of greater 

strength. The system will converge either to a single, lowest energy configuration, or a 

pair of states between which it oscillates. When the system reaches a 2-state oscillatory 

configuration, the two states are averaged pixel by pixel, then the process is restarted. 

This loop continues until the system converges. For this approach to succeed, 

inconsistencies in the data due either to excessive noise or edges must be flagged and 

subsequently ignored in the processing. A preprocessing stage locates noise induced 

inconsistencies by traversing loops around the neighborhood of each pixel. If the 

accumulated phase steps encountered while traversing the loop do not equal zero, then an 

inconsistency exists and is flagged. Edges must be flagged manually. 

Since this approach employs an iterative process, it allows elements beyond a given 

pixel's immediate neighborhood to influence the pixel's fringe number assignment. 

However, the approach requires many iterations to converge - over 3000 on a relatively 
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noiseless 512x512 image. The algorithm performs its calculations on every pixel in the 

image for each iteration. Since it is an iterative, full field process, its computational cost 

is very high. Therefore, the finite automata approach is not a viable alternative for this 

project. Also, since the algorithm fails to take full advantage of the surface smoothness 

constraint, it cannot detect edge discontinuities and its reliability is decreased. 

3.4 An image processing techniques based approach. 

Vrooman and Maas developed a phase unwrapping technique quite similar to the 

technique described here M. They use a threshold applied to a measure of the modulation 

strength of each pixel to eliminate pixels likely to be dominated by noise. To find 

locations where phase discontinuities need to be unwrapped in the data, they either look 

for places where the difference between the pixel at the current location and a previously 

unwrapped neighbor is greater than n or, for noisier images, instead of comparing the 

current pixel to only one location, they use the average value from a 3 x 3 neighborhood 

around the pixel. Similarly to the strategy employed in this project, pixels are processed 

in an expanding four-connected wavefront moving outward from a starting location. 

Once the phase has been unwrapped using this approach, a subsequent operation is 

applied which smoothes the data by fitting planar patches to the phase surface. The 

smoothed results are used in making strain calculations. While the phase assignment 

procedure used in the Vrooman and Maas approach is more robust than the simple scan 

line based techniques, their assumption that a 3 x 3 neighborhood is both sufficiently 

populated and sufficiently representative of the phase in the area of a pixel to fully 
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determine the value of the phase at the pixel of interest does not hold for the noisy images 

obtained with the EOH system. 

3.5 Other techniques. 

Towers unwraps the image in individual sub-blocks, then joins the blocks together by 

matching the boundaries13. He uses this technique to avoid contaminating good data with 

inconsistencies induced by bad data. The image is divided into a number of small blocks, 

then each block is unwrapped individually. Subsequently, the borders of each block are 

joined with their neighbors. Where fringe discontinuities along abutting block borders do 

not match, the less trustworthy block is marked as containing bad data and discarded. 

Trustworthiness is proportional to the inverse of the number of phase transitions found in 

the block. That is, higher fringe densities are assumed to imply lower trustworthiness. 

This approach relies on the row / column scan technique to unwrap each of the blocks, so 

it is highly susceptible to noise induced failures. Also, when a block is discarded due to 

inconsistency, good data are lost with the bad data. For this project, a more robust 

approach is desired. 

Owner-Petersen uses the smoothness constraint to smooth the phase conditionally prior to 

unwrapping '6. He assumes large noise, and to minimize its effect, he quantizes the phase 

into four equal sized intervals. Histograms of each pixel's neighborhood are computed to 

get the number of neighbors of each category. A decision criteria is applied to the results 

to determine a new smoothed phase value. A phase number is assigned based on this 

smoothed result. This approach uses the smoothness constraint to good advantage. 
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However, by discarding the six least significant bits of the measured phase, much 

information is lost Furthermore, the use of neighborhood histograms rather than a more 

robust surface fit compromises the algorithm's robustness in the presence of 

discontinuous data. 

3.6 Conclusions derived from past implementations of phase unwrappers. 

Numerous approaches have applied smoothing filters to the original holograms prior to 

the arctan computation 12, l7'I8. While smoothing the original fringe data eliminates some 

noise, it also averages speckles together which may have markedly different modulation. 

By spatially averaging, a pixel with a high modulation magnitude may be averaged with a 

number of pixels with lower modulation magnitudes and, therefore, lower signal to noise 

ratios. As a result, the best data in the image will invariably be diluted by poorer data 

values around it. Furthermore, the spatial accuracy of the data will be compromised by 

averaging so that sharp borders will blend into the background and discontinuities will be 

smoothed over. To avoid these effects, the approach used here avoids pre-smoothing the 

data in favor of a system that applies the smoothness constraint to the data by fitting an 

individual surface patch to the measured data values at each point in order to locate the 

phase related discontinuities. 

Some unwrappers have used row / column based unwrapping or inward spiral scans in 

processing the hologram data. Both these approaches will unwrap data at the outermost 

boundary of the object first. By visiting the boundaries first, the unwrapper is susceptible 

to introducing edge related errors early in the unwrapping process. These errors will 
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propagate through the remainder of the surface as the unwrapper continues. Furthermore, 

time average holograms tend to have low amplitude, higher order fringes near the 

boundaries of the object since the boundaries are most likely to be unconstrained. Low 

amplitude fringe data has a lower signal to noise ratio, so the unwrapper is more likely to 

introduce errors when processing these areas. The most reasonable solution to these 

problems is to start the process from a safe, well defined, interior location and progress 

outwards. 

These ideas are employed in the development of the phase unwrapper presented in 

Chapter 4. 
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Chapter 4. Phase unwrapping by planar facet fitting. 

The phase unwrapping technique introduced in earlier chapters is fully developed here. 

To accomplish the goal of unwrapping the phase, the energy of the difference of the 

measured surface from an ideal model ofthat surface represented by the unwrapped phase 

must be minimized by adding appropriate multiples of n to each point's phase value. As 

discussed in Chapter 2, the energy can best be rmnimized when changes in the slope of 

the surface are minimized, that is, when the difference between the highest potential 

arrangement of the surface defined by the data values is least different from the model. 

The potential is highest when the data values are coplanar, where the gradient of the plane 

is always less than some maximum value. The minimum allowed fringe spacing defines 

the maximum value that the gradient can take. Fringes containing fewer than three pixels 

are ambiguous, so the maximum magnitude allowed for the gradient is 2n/3 radians per 

pixel. The model used to describe the system is a parameterized version of a plane with a 

limit on the allowable size of the gradient. Thus, the presence of an abrupt transition 

caused by a phase discontinuity represents a higher energy state than if the transition were 

removed by the addition of appropriate n multiples. These high energy discontinuities 

are detected and removed by a planar facet estimator as detailed below. 
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4.1 Overview of the technique. 

Experience indicates that simple scan-line techniques are insufficient for solving the 

phase unwrapping problem. The large amounts of noise in the images combined with the 

variable reliability of the data induced by the speckling of the reflected laser light 

combine to make sequential scan techniques inappropriate. Any effective technique must 

use data from a neighborhood larger than a point's 4 or 8-connected neighbors to be able 

to accurately predict the trends in the data which will correctly locate phase transitions. 

The technique developed here begins processing from a user selected origin or "seed 

point." As processing progresses, the pixels along a wavefront growing outward from the 

seed are considered. As each new pixel is visited, a planar facet is fit to the neighboring 

phase values which have already been processed. The facet parameters are then used to 

estimate the correct value for the new pixel based on the trend dictated by the prior 

pixels. The estimate is then compared to the measured, wrapped phase value at the new 

pixel and a fringe number is assigned to minimize the difference between the estimate 

and the measured phase summed with a multiple of n. The data used in each of the facet 

fits is weighted according to the reliability of the data at each point in the neighborhood. 

Those pixels whose speckles are bright indicating a large modulation magnitude are given 

greater influence than darker pixels since the brighter pixels are less affected by the noise 

in the system. 

Once the wavefront has swept over all the data in the area of interest chosen by the user, 

subsequent iterations can be performed to further rmnimize the energy of the surface fit. 
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The extra iteration(s) have larger regions of support on which to fit the planar facets, so, 

as a result, bring the fringe numbers into the highest potential configuration possible for 

the given neighborhood size. As a post processing step, the resulting unwrapped phase 

can be smoothed by another raster scanned application of the facet fits. The facet estimate 

values are stored in another image to provide as smoothed output. This smoothing 

constitutes a piece-wise least squares smoothing algorithm. Appendix A contains a set of 

block diagrams showing the software implementation of this algorithm. 

4.2 Noise, modulation magnitude and the weighting function. 

The phase data to be unwrapped are derived from a set of either 2 or 3 images depending 

on whether static or time average holograms have been generated, respectively. In either 

case, an extra image which consists of a hologram of the object without any excitation 

can provide information about the reliability of the data at each pixel. The bright areas in 

the image correspond to where the speckle pattern is brightest and so the magnitude of 

the modulation of the speckles is greatest. That is, as the light from the speckle interferes 

with the reference beam and the phase of the reference beam is stepped, those speckles 

with the highest intensity will give the largest change in intensity due to processing, and 

thus appear to be the brightest pixels in the image. This "modulation map" can be used to 

eliminate noise dominated speckles in the unwrapping and to give brighter speckles 

greater influence. 

In an ideal system, the magnitude of the modulation would not matter since, if any light 

were reflected from the object, a valid measurement would result. However, the camera 
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and image processing system both have limited dynamic range and both introduce noise 

into the signal. Any CCD camera will introduce increasing "shot noise" as the CCD array 

heats up. Besides the shot noise, the camera electronics and image processor front end 

introduce noise to the signal as well. Other sources contribute to the overall noise of the 

system besides the electronics. Small fluctuations in the intensity of the output of the 

laser cause large drops in the dynamic range of the measured phase. Air turbulence 

induced by mixing warm and cold air masses, causes changes of apparent path length in 

the beams and thereby changes the phase of the beams. Such phase changes can easily 

cause image degradation. These moving air masses can also act like very weak lenses 

and change the direction of the beams slightly. Directional changes in the beams, 

especially in the reference beam, can move the beam's focus as it exits the diverging 

objective. If the focus point moves, it will no longer pass through the pin-hole filter by 

the same path. As the pin-hole filter blocks different portions of the beam, the pattern 

and intensity of the reference light field changes and the differences between frames will 

include the differences induced in the reference beam as well as the speckle modulation. 

As a result, still more noise is added to the image. 

While many factors contribute to the system noise, it is possible to empirically quantify 

the noise through a calibration procedure. The procedure consists of the following steps: 

1. Capture an image with a 0 degree phase offset in the reference beam. 

2. Capture a second image with a 360 degree phase offset in the reference beam. 

3. Subtract the second image from the first. 
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4. Repeat the process and sum the results over a number of frames equal to the 

number of frames averaged in the hologram acquisition process. 

5. Generate a histogram of the resulting difference image. 

6. Set the maximum noise level to be the maximum value in the histogram. 

The 360 degree phase shift between the pairs of images should not induce any modulation 

in the speckles. The step is included to account for any inconsistencies in the phase 

shifter's behavior and to recognize miscalibration of the phase step size. An image 

generated by this method appears mostly black with Gaussian noise distributed about a 

small positive mean value. 

Once the noise level has been empirically determined, its value is used to convert the 

modulation magnitude map into a weighting function for the facet fitting. All values in 

the modulation magnitude map are divided by the noise level and truncated to integer 

values. Thus, any pixel whose value is less than the noise level is assigned a value of 0 

and ignored. All other pixels are assigned a positive integer weight value which is 

directly related to the brightness of the speckle. Bright speckles get higher weights and 

influence the facet fit more than dimmer ones. Once computed, this weighting function is 

stored in an array for use during the remainder of the procedure. 

4.3 Seed point selection and initial growth. 

The seed point is the starting point from which the unwrapping progresses. A user selects 

the seed point at a location on a nodal line in a time average hologram or where an object 
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is known to be fixed in a static hologram. Since the user could accidentally choose a 

point for which the weight function is zero, a routine must be included to find a valid 

seed point "near" the chosen point. This routine first tests the chosen location, and, if the 

chosen pixel has zero weight, spirals outward from this location until a valid pixel is 

found. 

After a valid seed is located, the phase must be unwrapped along an expanding 

wave-front. However, there is only one pixel of prior data to use to determine the fringe 

number of the next pixel visited. Unfortunately, the facet fitting routine requires at least 

3 non-colinear points to determine a plane, otherwise the matrix employed in estimating 

the phase value will be singular and not invertable. Therefore, an interim approach is 

used to get the unwrapping started. In order to build a set of prior data large enough to 

support facet fits, a traditional difference based technique is employed along the newly 

established wave front. By this technique, a new pixel's phase value is subtracted from its 

previously processed neighbor's phase. If the difference between the phases is greater 

than 7i, then an appropriate number of n multiples are added to bring the two points 

within 7i radians of each other's value. This technique is included in the phase unwrapper 

as a fallback method to employ whenever there is insufficient support for a planar facet 

fit. 
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4.4 Expanding wavefront processing order. 

A first-in-first-out (FIFO) circular list structure maintains the addresses of the pixels 

which lie along the leading edge of the expanding wavefront of processed data. After a 

pixel is processed, its 8-connected neighbors are each tested as candidates to go into the 

list. A flag bit in the mask array indicates that the corresponding pixel has already been 

processed. Another bit indicates that the pixel is currently in the list. All of the current 

pixels 8-connected neighbors which have neither been processed nor are currently in the 

list are added at the tail of the list. The flag indicating the pixel has been added to the list 

is set for each of the new pixels in the list and cleared for the pixel which has just been 

processed. Finally, the newly processed pixel's processed flag is set. The next pixel to 

process is removed from the front of the list, its fringe number is assigned based on the 

fitted facet, and the process repeats. 

Processing proceeds along an expanding wavefront emanating from the seed point. The 

expanding front results directly from the use of the FIFO list. Any new pixel added to the 

list is an external neighbor of a pixel already on the list. But all the pixels currently in the 

list must be processed before the new pixel will be serviced. Therefore, a complete 

circuit around the wavefront is completed before this new addition to the FIFO gets its 

turn. This visiting order provides nearly the optimal possible region of support, on 

average, for fitting each new pixel's facet. Figure 4.1 shows the processing of a relatively 

simple neighborhood. Processing begins at the seed point, then the seed group is formed 

by comparing the value of each member of the group to the seed's value. If the value 
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differs by more than 71 radians, then a phase discontinuity is introduced between the 

pixels and the proper n multiple is added to the member's phase value. Once a sufficient 

region of support has been built for the determination of a plane, the planar fitter is used 

to estimate phase values for subsequent pixels drawn from the head of the FIFO list. 
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Fig. 4.1 Processing order for 8-connected FIFO based sequential scan. 

Expansion of the wavefront will stop for either of two reasons: 1) The expansion stops 

when the wave reaches the outer boundary for processing defined by a rectangular area of 

interest (AOI). 2) Expansion stops beyond any given pixel if no further non-zero 

weighted, unprocessed data points can be found among the 8-connected neighbors ofthat 

pixel. So, if the speckle modulation outside the boundary of the part lies beneath the 

noise threshold, processing stops along the part's edge. Since speckles are generated by 

laser light reflecting from the object's surface, beyond the edge of the object there will be 

no speckles. Where there are no speckles, the speckle modulation is near zero and the 
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weight function automatically clips the facet's region of support, so the wave's expansion 

stops. 

4.5 Planar facet fitting to an incomplete, weighted array of data points. 

As the wavefront propagates outward, pixels are visited in a sequential path along the 

expanding perimeter. Since pixels are put in the wavefront list only when one of their 

neighbors has been processed, any pixel on the list is guaranteed to have at least one 

8-connected neighbor which has already been processed. Because the wavefront can 

grow around holes in the data or even around interior edges of the object, a given pixel 

can have anywhere from one to eight 8-connected neighbors which have already been 

processed. As the region of support for a given pixel is expanded to a larger 

neighborhood, nearly any arrangement of previously processed pixels is possible. This 

variability in the population of the region of support at a pixel leads to the requirement 

for a generalized solution to the fitting problem. 

For simplicity, a rectangular region centered on the pixel of interest is used to estimate 

the value that the pixel should have. The width and height of this region are adjustable 

parameters. As the neighborhood size grows, processing time increases, but accuracy 

increases, as well. However, if the neighborhood "radius" gets larger than the smallest 

surface feature size to be resolved, then larger neighborhoods will result in a worse fit 

leading to errors. Since the surfaces under investigation are predominantly smooth and 

slowly changing, errors due to oversize neighborhoods are not a common problem. 
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Any neighbors of the pixel of interest within the extent of the neighborhood which have 

already been processed are marked by a flag bit in a "mask" array. Only those neighbors 

so marked should be considered when fitting the facet. Further, as described previously, 

a weighting function based on the intensity of the speckle and, thereby, its immunity to 

noise, is used to give greater credence to the more reliable pixels in the neighborhood. 

Taking the above factors into consideration, a generalized weighted least squares fit of a 

planar model to the data values is used to estimate parameters of a surface to describe the 

data, from which an estimate of the pixels phase can be made. 

The planar model used can be expressed as the linear combination of a set of the three 

polynomials 

po = 1 ,        p\ =x , and      p2 =y . 4.1) 

Three parameters, A, B, and C, scale the influence of each of the polynomials in the 

model to give 

P(x,y)=Ax + By+C , 

where P(x, y) is the value at the point with coordinates (x, v). 

4.2) 

This very simple polynomial is orthogonal over any symmetrical area centered about the 

origin. An orthogonal set of polynomials is defined as a set for which the inner product 

of every distinct pair of polynomial terms is zero 19. The inner product for discrete 

problems can be expressed as 
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ML        A\ 

<Pi,Pj)= 2   2 Pi(m)pj(n), i*j , 
m=Mi n=Nt 

4.3) 

where pt and pj are the ith and jth polynomials in a polynomial set, and the 2-D region 

over which the polynomial set is orthogonal is bounded below by (Mp N,) and above by 

(Mh, Nh). Clearly, for the polynomial set in Eq. 4.1 the requirement for orthogonality is 

met over any region which is symmetric about the origin since the pairs of scalar products 

are all zero. Orthogonal systems are characterized by a high degree of numerical 

stability. This follows because, for problems expressed as matrix equations, the solution 

depends on inverting a large matrix. With orthogonal systems, this matrix is diagonal, 

and the inverse of a diagonal matrix is a trivial computation, especially if all the diagonal 

elements of the array are guaranteed to be non-zero. An orthogonal set has been chosen 

specifically to reduce the numerical instability of the problem. Unfortunately, the 

polynomials will no longer display orthogonality when applied to incomplete, weighted 

matrices, since the weights are not guaranteed to be symmetric about the origin. 

However, the numerical stability of the system will still be improved by the initial 

selection of an orthogonal polynomial set since, in general, as the system gets closer to 

orthogonality, its numerical stability improves. Careful inspection of the matrix 

inversion required to solve the problem shows the benefits of the use of a nearly 

orthogonal system, and will be discussed further immediately after the solution is 

presented. 

To find the best fit of the polynomial with the data set, the square of the error of the 

model data, P(x, y), relative to the actual data, z(x, v), must be niinimized. The squared 
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error, e2, is computed from the sum of the squares of the fitting errors at each point, 

scaled by the weight function, represented by w(x, v), over a neighborhood of horizontal 

extent 2N+1 and vertical extent 2M+1, centered at the point (x, y), so " 

e2(x,y) = £'JLJ[P(i,f)-z(x+i,y+j)Mx + i,y+j)}2 = 
j=-Mi=-N 

M     // 
=  2    I {[Ai + Bj + C-z(x + i,y+j)]w(x + i,y+j)Y 

J=-Mi=-N 
4.4) 

Note that w(x, y) will be zero for pixels that have not yet been processed. Also, the 

model's origin is at the pixel of interest, so the estimated value at that pixel is just C since 

both x and y equal zero at the origin. 

Now the error must be minimized with respect to each of the three variables, so find 

mins2 = min L   I {[Ai + Bj+C-z(x + i,y + ft\vrix + i,y+j)}2 .        4.5) 
AJS,C AJB,Cj=~M i=-N j 

To niinimize Eq. 4.5, create three new equations. In each, set the derivative of the right 

hand side of Eq. 4.5 with respect to one of the three variables equal to zero to get 

0=fcJ^ = ZZ2iW
2(x + i,y+f)[Ai + Bj+C-z(x + i,y+j)], dA j   • 

0 = ^-^- = IlIl2jw2(x + i,y+j)[Ai + Bj+C-z(x + i,y+j)], 8B 
j   > 

° = ^£^ = ZI,2w2(x + i,y+MAi+Bj+C-z(x + i,y+j)]. 

4.6) 

4.7) 

4.8) 
j   • 

In matrix form, Eqs 4.6 to 4.8 can be expressed in the form 0 = Ar - b as 
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0 
0 
0 

££z2w2(;c + i,y+J) Z!ijw2(x + i,y+j) Y.Yliw2(x+i,y+j) 
j   i j   • j   i 

ZI.ijw2(x + i,y+j) 2S/w2(x+ ;>+/) ll,jw2(x+i,y+j) 
j   i j   ' j   i 

£ £ iw2(x + i,y +j)   £ I.jw2(x + i,y +J)  £ £ 1 w2(x + i,y +j) 
j i j ' j • 

A 
B 
C 

£ £ iz(x + i, y +j)w2(x + i,y +f) 
j • 

£ £/z(x + Uy +j)w2(x + i,y +j) 
j i 

I.'Lz(x+i,y+j)w2(x + i,y+j) 
j   i 

4.9) 

Redistributing terms in Eq. 4.9 and multiplying both sides by the inverse of A gives 

A 
B 
C 

= A-> 

Y.Y.iz(x + i,y +j)w2(x + i,y+/) 
j i 

£ £/z(x + i,y +f)w2(x + i,y +j) 
j   i 

I,I,z(x+i,y+j)w2(x + i,y+j) 
j • 

where 

A-! = 

I.Xi2w2(x + i,y+j) 7LlLijw2(x + i,y+j) It'Ziw2(x + i,y+j) 
j   * j   i J   • 

!I,ijw2(x + i,y+j) l'Zj2w2(x + i,y+j) T,'Zjw2(x + i,y+j) 
j   i j   i j   i 

£ £ iw2(x + i,y +f)   I £/w2(x + i,y +f) £ £ 1 w2(x + i,y +j) 

~i-i 

j i j i j ' 

The matrix to invert is symmetric about its diagonal, so the its inverse is also symmetric. 

Given^the assignments 

a(x, v) = £ £ i2w2(x+i,y +j), b(x,y) = £ £ ijw2(x+i,y +j) , 
j   i 

c(x,y) = £ £ iw2(x + i,y +j), 
j • 

d(x,y) = XI,j2w2(x+i,y+j) , 
j ' 

e(x, v) = £ £yw2(x + i,y +j)    and 
j • 

ßx,y) = I.I.w2(x+i,y+j) , 
j • 
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for the elements of A, and 

g(x,y) = Z2iz(x + i,y+j)w2(x + i,y+j')   ,     h(x,y) = I,Xjz(x + i,y+j)w2(x + i,y+J) and 
J   ' j   i 

i(x,y) = S Zz(pc + i,y +f)w2(x + i,y +j) , 4.!0) 

for the elements of b, then the matrix inversion can be written as 

a b c 
b d e 

[c ef_ adf- ae2 - b2f+ 2bce - c2d 

h h  Ic 

It Idle 

Ic Ie   If 

4.11) 

where 

Ia(x,y) = d(x,y)jlx,y)-e2(x,y) , h(x,y) = c(x,y)e(x,y)-b(x,y)f{x,y)   , 

Ic(x,y) = b(x,y)e(x,y) - c(x,y)d(x,y) ,       Id(x,y) = a(x,y)f(x,y) - c2(x,y) , 

Ie(x,y) = b(x,y)c(x,y) -a(x,y)e(x,y)   and Ij{x,y) = a(x,y)d{x,y) - b2(x,y)   . 4.12) 

Solving for the values of the coefficients of the polynomials at each point (x, v) gives 

A = Iag+hh+Ici 

B = 

adf- ae1 - b2f+ 2bce - c2d ' 

hg+Idh + Iei 

adf- ae2 - b2f+ 2bce - c2d 

4.13) 

and 4.14) 

C = 
Icg + Ieh+Iji 

adf- ae2 - b2f+ 2bce - c2d ' 
4.15) 

An earlier statement suggested that the use of a "nearly" orthogonal polynomial basis set 

would help improve the numerical stability of the solution in the presence of a 

non-symmetrical weighting function. The following argument based on inspection of the 
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solution derived above justifies such a statement. First, notice that the denominator for 

each of the three coefficients is identical. A solution for the coefficient values will be 

numerically stable as long as the denominator does not get so small that the error 

introduced by truncation effects in the computer's internal representation of the numerical 

value of the denominator causes significant error in the computed results, and, of course, 

as long as the denominator is not equal to zero. Each term in the denominator is 

composed of the product of three double summations. Each summation, in turn, is 

composed of products of neighborhood indices and weighting function values. The 

neighborhood indices are small integer values, symmetrically distributed about the origin 

and typically no larger than 32. The weighting function values are also small integers, 

typically no larger than 100. Since all these terms are integer values, the denominator 

will also be an integer value. While the degenerate case where the denominator equals 

zero is possible, it can be caught in the code and handled by using an alternate means to 

estimate the phase at the poorly behaved point. 

For a truly orthogonal basis set, all the off-diagonal elements of the 3 x 3 matrix become 

zero. This useful result follows from the fact that each of the off-diagonal elements 

includes neighborhood indices / andy to the first power. Furthermore, the weighting 

function becomes a constant. Since the neighborhood is defined to be symmetrical about 

the origin, and each off-diagonal element is simply the product of the neighborhood 

indices and a constant, the sum of each positive and corresponding negative pair of 

indices cancel. When all the off-diagonal elements of a matrix are zero, the matrix is said 
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to be diagonal. A diagonal matrix is trivial to invert - simply replace each element on the 

diagonal with its inverse. Now, assuming the neighborhood is defined over a non-zero 

area, the diagonal elements are guaranteed to be non-zero since they are composed of 

double sums of the squares of the neighborhood indices, or of a constant. Therefore, the 

matrix inversion must be numerically stable because the values to invert are never zero. 

The question still remains - why does this help in the "nearly" orthogonal case? The 

answer is that, in general, for a "nearly" orthogonal system, the value of each term of the 

denominator which depends on the off-diagonal elements of the matrix will be 

minimized. Then, the term of the denominator in Eqs 4.13 to 4.15 which depends only 

on the diagonal terms of the matrix is dominant. As a result, the likelihood of finding a 

neighborhood configuration which leads to a zero valued denominator is minimized. 

Also, since only first order polynomials are used in the fit, multiple conflicting solutions 

cannot exist, as can happen, for example, when fitting sinusoids to data where many very 

high frequencies could all fit the data under various conditions. 

Finally, in order for the fitted coefficients to provide a valid estimator for the new pixel, 

the fit routine requires sufficient support to fully define a plane. Three non-colinear 

points are necessary and sufficient to define any plane. To try to insure stability, the 

fitting procedure for the unwrapper checks that the facet's region of support includes at 

least four non-colinear points with non-zero weights. The extra point provides some 

redundancy to limit the influence of any noisy points which might otherwise skew a facet 
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with little support. Of course, when more data points are available within the facet's 

extent, they will all be used to improve the facet's fit. 

4.6 Fringe number assignment 

The fitting routine transforms the coordinates of the region covered by the facet to a facet 

based coordinate system where the pixel of interest lies at the origin. Therefore, the facet 

based estimate for the value of the data at the pixel of interest is simply given by the 

coefficient of the zero order polynomial. That is, the estimate's value e is given by 

e = Ax + By+C=C, 4.16) 

since x and v are both equal to zero. 

Given the phase estimate, e, and the measured phase value, z(x, v), a fringe number, n, 

must be chosen to minimize the difference between e and z, so 

min{|e-[z(x,v) + wi]|} 4.17) 

must be found, in the case of time average holography or 

min {\e - [z(x,y) + 2n%] |} 4.18) 

for the case of static holography. 

The easiest solution to this problem is 

n = roun 
Je-z(x, 
\ TT 

v) or n = roun 
Je-z{x,y)\ 4.19) 
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respectively. 

Values for n are computed at each point as it is visited to build up a fringe number map. 

The fringe numbers are stored separately from the phase data to avoid corrupting the 

original data. 

4.7 Fitting iterations for energy minimization. 

While the unwrapping outlined above performs quite well, investigation has shown that, 

based on all the neighbors available after unwrapping is complete, pixel fringe numbers 

appear to have been occasionally mis-assigned. That is, fringe number assignments based 

on the partial region of support available at each pixel during the unwrapping are not the 

lowest energy fringe numbers based on the more completely populated region of support 

available when the unwrapping is complete. To correct the occasional stray 

mis-assignments, subsequent iterations of the fitting procedure are applied to the data. 

Now, since the facets will be fit to each entire neighborhood (except for locations where 

the weighting function is zero) processing order is irrelevant. Therefore, the 

minimization fittings are applied in a raster scanned order. 

Since the minimization iterations have larger regions of support, more accurate estimates 

of the phase at each point are made. When a new estimate for the fringe number 

disagrees with the previous assignment, the new fringe number value is used, instead. 

Any changes made to one pixel could affect its neighbor's fits. Therefore, the process 

repeats until no more changes occur. It is conceivable that a pair or group of pixels could 
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oscillate and never reach a minimum energy configuration. To avoid infinite oscillation, 

a limit is set on the number of energy minimization iterations to run. In practice, two 

iterations are usually sufficient to acheive convergence, and the system has never required 

more than four iterations. 

4.8 L UT correction for time average holograms. 

When time average holograms of vibrations are processed, the unwrapped phase which 

results differs slightly from the actual phase due to the assumption of cosine fringes made 

in the derivation of the equations (see Chapter 2). The correction LUT is precomputed 

and stored for use at this point in the unwrapping procedure. As with any LUT, output 

mappings are only defined for discrete values of the input. However, the phase is a 

continuous function. Therefore, the output value is computed by a linear interpolation of 

the two nearest values in the table. 

Use of an LUT also implies integer indexing into the table. The input data values must 

be scaled and converted to positive integers before being used as indices into the table. 

The LUT function for negative values is identical, except in sign, to the positive values, 

so space may be saved by using one table for both ranges with appropriate sign changes. 

4.9 Data smoothing with planar facets. 

Due to the influence of various noise sources, the unwrapped EOH data generated by the 

system are generally not smooth. Furthermore, any pixel sites whose weight values were 

zero contain no data. To fill in the disregarded points and produce a more uniform 
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surface, the facet fitting routine can be used once again. A new set of smoothed data is 

created by assigning the value at each point to the value of the estimate returned by the 

facet fitter. This smoothing technique fills holes in the data and smoothes noisy data. 

Whether to smooth the data is a philosophical problem with many ethical ramifications. 

In general, smoothing or otherwise altering data for presentation should be avoided, but, 

given that the data measured here correspond to continuous displacements of nearly rigid 

surfaces, were it not for the noise, the measurements would undoubtedly give smooth 

results. Therefore, facet based smoothing is provided as an optional element of the 

algorithm. In using planar facets to perform the fitting, we assume that the size of the 

features in the data are large compared to the size of the facets. Were we to employ 

quadratic facet fitting for the smoothing step, this assumption could be relaxed, but the 

sensitivity to noise would also be increased. 
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Chapters. Results. 

This chapter contains examples which show the capabilities of the new phase unwrapping 

technique as applied to image data generated by an EOH system. The unwrapper has 

been applied to numerous different objects including the goblet and rectangular plate 

shown here. The process requires from 2 to 10 minutes to complete depending on the 

size of the object, the quality of the holographic data and the size of the rectangular 

boundary used to define the area to process. The samples included here show the 

algorithm's inherent ability to define the boundaries of objects based on the modulation 

magnitudes. Examples are included to show the unwrapper's ability to unwrap densely 

distributed wrapped phase fringes in both the static and time average case. The visual 

improvements which result due to smoothing are shown as well. Finally, some complex, 

high frequency time average holograms with compound curving surfaces are shown to 

demonstrate the algorithm's ability to follow curves in the data. 

5.1 Static mode examples. 

Figures 5.1 and 5.2 show examples of phase unwrapping applied to static mode EOH 

data. The weighting function provides a means of automatically locating exterior 

boundaries of objects in the image. Since the weights are computed from the modulation 

magnitude at all points in the image, and the modulation magnitude is very small 

anywhere that the object beam does not diffusely reflect from the surface of the object of 
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interest, the weights outside the object are generally zero. As the unwrapping approaches 

an object boundary, all the zero weighted points outside the object are ignored. As a 

result, processing naturally stops at object boundaries. The example in Fig. 5.1 shows the 

effect of this automatic boundary detection. Wherever the processing wavefront 

encounters the edge of the cup, the modulation magnitude weighting values fall below the 

noise threshold and the exterior points are never added to the processing queue. As a 

result, eventually the processing queue empties before reaching the edges of the 

rectangular region defined for processing and the unwrapper determines that the area has 

been completely unwrapped. 

The holograms created for phase unwrapping are not directly displayable since they have 

a dynamic range of 16-bits and the display is limited to 8-bits. A non-negative 

representation of static mode fringes can be constructed by taking the square root of Eq. 

2.22 to give the displayable image, ID, described by 

ID = V8£>2 + 8Z)2cosQ . 

While the 16-bit signed static mode images proportional to the sine and cosine of the 

phase, Q, cannot be displayed directly, they can be displayed by scaling the values to lie 

between -128 and 127. Then, by adding 128 to every pixel, images with zero at neutral 

gray are produced, where negative values appear as darker fringes and positive values 

appear as lighter fringes. 
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(a) Static display mode hologram. (b) Sinusoidal static data mode fringes 

v\i 

'/:'<*^^'v' 

(c) Cosinusoidal static data mode fringes, (d) Fringe number map. 

Fig. S. 1   Wine goblet statically loaded with a weight placed across the 

top of the glass. Image (a) shows the display mode hologram. Images (b) 

and (c) show the sinusoidal and cosinusoidal data mode fringe patterns, 
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respectively. Image (d) shows the fringe numbers assigned over the area 

processed, and illustrates the automatic boundary detection that results 

from the use of the weighting function (all black regions have been 

excluded from the object). 

Facet based phase unwrapping has proven to be reliable and effective. In the static mode 

hologram of a bending beam shown in Fig. 5.2, the unwrapper successfully processed 40 

fringes across 288 pixels. This implies that fringes spaced only 7 pixels apart have been 

interpreted correctly. Figures 5.2a to 5.2d show the image data at various stages during 

the process of deriving the displacement data and Figs 5.2e to 5.2g show the 

displacement data. 

(a) Static display mode hologram. (b) Sinusoidal static data mode fringes. 
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(c) Cosirmsoidal static data mode fringes. (d) Wrapped phase. 

%   <%? 

(e) Surface displacements. (f) Zoomed upper right corner of (e). 
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(g) Shaded representation of the displaced surface. 

Fig. 5.2  Static bending of a 101.6 mm x 50.8 mm x 3.175 mm aluminum 

plate. The plate was fixed at the bottom and a force was applied from the 

back of the plate approximately in its middle and pointing toward the 

camera. The static display mode hologram is shown in (a) while the 

sinusoidal and eosinusoidal data mode holograms are shown in (b) and 

(c). The wrapped phase computed from (b) and (c) is shown in (d). In 

these images, mere are 40 fringes across the 288 pixel height of the plate. 

(e) to (g) show renderings of the unwrapped displacement data. The 

wireframe plot in (e) shows the data converted to metric coordinates and 

(f) shows a zoomed portion of the upper right corner of the data rendered 
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in (e). The small scale random variations visible in (f) are caused by the 

various sources of noise in the system. The image in (g) is a shaded 3-D 

rendering of the displacement data mapped onto a rectangular plate. 

5.2 Time-average mode examples. 

Examples of time-average mode operation are given in Figs 5.3 and 5.4. Time-average 

mode allows real-time observation of fringe patterns indicative of the displacement of the 

object's surface in resonant vibration modes, as well as the capture of data for processing. 

Since the three biased time average hologram images represented by Eqs 2.45, 2.51 and 

2.54 each have 16-bits of dynamic range, their square roots are shown in these examples 

to make 8-bit displayable images and to enhance fringe contrast. In use, as an operator 

scans through a range of excitation frequencies driving the part under observation, fringe 

patterns appear and disappear as the driving frequency passes through the part's 

resonances. The operator can capture image data for quantitative analysis after a 

resonant mode has been found by this real-time observation. 
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(a) Negative biased time-average hologram,     (b) Zero biased time-average hologram 

'*&* 

(c) Positive biased time-average hologram (d) Wrapped phase. 
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(e) Surface displacement plot.        (f) Shaded surface with exaggerated displacements 

Fig. 5.3 Time-average EOH of a plate vibrating in a resonant mode at 6,540 Hz. fa 11 

(c) images of the negative, zero, and positive biased holograms used to compute the 

uncorrected phase, (d) image of the wrapped, uncorrected phase, (e) the displacemen 

values plotted on a wireframe grid after facet based smoothing has been applied, and s f 

3-D shaded rendering of the same data mapped to a rectangular plate, in the shaded 

image, the primary light source is below and slightly in front of the plate 
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(a) Zero biased time-average hologram. (b) Smface displacement plot. 
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(c) Full scale -+ (d) Half scale-• (e) Zero 

(f) Half sea It (g) Full scale - 
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Fig. 5.4 Time-average EOH of a plate vibrating in a resonant mode at 34,061 Hz. Image 

(a) shows the display mode hologram as seen on the image processor screen. The 

displacements computed from the smoothed phase are displayed in (b). Images (c) to (g) 

show one half of a cycle of the vibration sampled at five positions during the motion. 

Notice that the surface displacements computed from the phase data undergo rapid 

changes in slope, especially in Fig. 5.4. Even in the presence of such high curvature, the 

planar facet based unwrapper can make a good local estimate of the expected phase at the 

next pixel. These images were unwrapped and smoothed with a 9 x 9 pixel facet which 

corresponds to roughly 1 x 1 millimeter in real coordinates. Since this size is small 

compared to the curving features of the surface, the unwrapper is able to follow the 

surface faithfully and little distortion is introduced in the smoothed output. 

For all the examples, the first stage of processing - the actual unwrapping - required from 

1.5 to 2.5 minutes. The energy minimization iterations make relatively small changes to 

the overall results but require the most time to complete. For these images, 2 or 3 passes 

were required taking from 6 to 10 minutes. This step can be skipped with no visible 

impact on the results. Finally, the smoothing step required from 2 to 3 minutes to process 

and store the data. 

In an experiment conducted on 10 images of time-average holograms in various resonant 

modes, the use of the weighting function consistently decreased the number of iterations 

required to achieve convergence for the energy minimization stage from three passes to 
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two. Convergence is achieved when the fringe number assignment for every pixel 

remains unchanged during the pass. So, since the weighting function places greater 

emphasis on pixels which are less influenced by noise, the system can converge to its 

lowest energy state more quickly. 

The shaded 3-D renderings of the data were produced by exaggerating the displacements 

by a user selected scaling factor, then averaging over a neighborhood to choose the value 

to apply at a grid point in a lower density array of surface displacement values. These 

displacement values were then mapped to a 3-D rectangular mesh composed of triangular 

primitives with the same number of grid points. The displacements deform the mesh 

according to the size and sign of the displacement measured from the phase in the 

holograms. As a result, when the surface is rendered, an exaggerated representation of 

the displacement is displayed. To generate the time sequence in Figs 5.4c to 5.4g 

showing the half cycle of a vibration, the displacements were exaggerated by 

multiplicative scaling factors of 1000, 500, 0, -500 and -1000. 
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Chapter 6. Conclusions and future work 

This final chapter presents conclusions based on the results presented in Chapter 5, as 

well as suggestions for future enhancements or improvements of the current phase 

unwrapper implementation. 

6.1 Benefits and features of the facet based fringe unwrapper. 

The work performed for this project shows that the planar facet estimator technique for 

error minimization on wrapped fringe data gives highly reliable unwrapping for 

continuous surfaces. The unwrapper uses all the information available from the 

experimental apparatus to perform its function including: 1) The actual data values for the 

wrapped phase, 2) A modulation magnitude measurement at every pixel, 3) 

Neighborhood smoothness and continuity constraints imposed on the data around each 

pixel, modeled as an MRF of limited extent - a justified assumption based on the physical 

nature of the data to be measured. The results presented in Chapter 5 show that this 

approach is robust enough to unwrap dense high order Bessel fringes, as well as phase 

surfaces with high curvature. As a valuable side effect, this algorithm automatically 

detects external boundaries at the edges of parts as long as there is a strip of low 

modulation data at the border. The quality of these experimental results demonstrates 

that energy niinimization by facet based estimation provides a valuable framework for 

future development of an even more complete system to unwrap phase in the presence of 
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discontinuities in the data. Use of the weighting function based on the speckle 

modulation intensity at each point in the image was shown to allow the iterative energy 

minimization process to converge more quickly and could provide the basis for locating 

and labeling discontinuities due to surface dislocations in future implementations. 

The facet technique requires no prior smoothing of the speckle pattern in the original data 

to perform the unwrapping. This constitutes a great benefit compared to many of its 

predecessors. Since the speckle pattern is largely uncorrelated, pre-smoothing has the 

disadvantages of reducing spatial accuracy and diluting good data with data dominated by 

noise. Were the operations applied to process the phase data entirely linear, then the 

same results could be achieved by linear smoothing of the data prior to unwrapping as by 

smoothing the data after unwrapping. However, the inverse tangent operation on the ratio 

of a set of fringe patterns is an inherently nonlinear operation. Consequently, the output 

from the two different processing orders is not identical and errors will be introduced in 

the data when smoothed prior to processing. The planar estimator operates directly on 

the wrapped phase data, so it maintains the spatial fidelity of the original data and, by use 

of the weighting function, gives greater credence to the pixels least likely to be influenced 

by noise. Data smoothing is performed as a post process to filter out high frequency 

variations based on the assumption that the phase varies slowly and smoothly over the 

surface. This same assumption is the basis of the Finite Element Method and associated 

mathematical modeling techniques; that is, the surface deformations observed result from 

a physical configuration of the part for which the potential of the system is maximized. 

B- 101 



Invariably, a smooth, continuous deformation pattern represents the highest potential 

energy of the system, provided the part is continuous and free of flaws. For all these 

reasons, the use of an unwrapper which smoothes the data after unwrapping, if at all, is 

essential. 

The technique does not, as yet, locate areas where discontinuities due to surface cracks or 

other aberrations cause inconsistencies in the fringe pattern. Future implementations of 

the unwrapper could perform an analysis of the quality of fit computed for each facet to 

help locate such problem areas, however. 

6.2 Suggestions for future improvements and enhancements. 

The following subsections detail a number of potential areas for improvement of the 

existing code and algorithms. 

6.2.1 Incorporate correction LUT into time average unwrapping directly. 

Results from time average holography show that the nonlinear mapping of the correction 

LUT occasionally results in inappropriate fringe number assignments. In areas with 

phase values near changes in the slope of the LUT, the facet will be fit to a section of the 

data with relatively high curvature. As a result, the estimated planar fit may under or 

over estimate the actual phase value on the inside of the curvature. Therefore, the energy 

minimization actually minimizes the energy of the uncorrected data, but not necessarily 

the energy of the corrected data since the conversion is nonlinear. To truly minimize the 

corrected data's energy, the algorithm must be modified to 1) fit the facet to data values 
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which have been pre-corrected through the LUT and 2) find the best match between the 

estimated phase and the value of the phase added to the appropriate multiple of it then 

corrected through the LUT. The resulting unwrapped values would then minimize the 

energy of the actual, corrected phase, not the uncorrected phase. 

6.2.2 Add facilities for interactive drawing of boundaries. 

For more complex parts with discontinuous surfaces and very irregular shapes, the 

current implementation cannot distinguish the difference between an actual discontinuity 

due to a crack in the surface and a phase discontinuity to unwrap. However, with minor 

modifications, the algorithm could be altered to build neighborhoods for each facet where 

the neighborhood never extends across a discontinuity line drawn by the user. Such 

interactive capabilities will undoubtedly be required even with a system for automatically 

locating discontinuities, since even the best technique will not always succeed. 

6.2.3 Data smoothing. 

Final smoothing of the data with large facets might be more appropriately implemented 

with a higher order polynomial fit routine. The use of planar facets results in flattening of 

hill tops and valleys, but, a higher order fit would be able to better match the curvature of 

the surface. Specifically, a quadratic fit would allow the model to match simple curves in 

the data. By using many high order terms, the model might simply "fit the noise". The 

use of a quadratic polynomial model represents a good compromise. Also, a reasonably 

accurate representation of an arbitrary curve can always be constructed with piece-wise 
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quadratic patches. Since the curvature of the surfaces in question is always small 

compared to the variations due to the noise, a second order fit over a large neighborhood 

would not be unduly sensitive to the noise. 

When the matrix inversion is performed on a higher order polynomial, the matrix is more 

likely to become ill conditioned. Direct inversion of the first order matrix presents no 

problem as long as three or more non-coplanar points are defined in the data since the 

dynamic range of the numbers involved cannot exceed the range available in the double 

precision floating point numbers used in the inversion routine. For inversion of matrices 

resulting from a least squares fit to a higher order polynomial, the matrix is larger and the 

dynamic range required increases. To insure that the inversion remains numerically 

stable, the matrix inversion must be carried out by a more stable technique such as LU 

decomposition. Such techniques are appropriate for potentially ill conditioned matrices 

since they transform poorly behaved matrices into more stable arrangements to reduce the 

likelihood of encountering "delicately balanced infinities" for which small truncation 

errors can cause large changes in the results 19. 

6.2.4 Speed improvements. 

As with almost any algorithm, special purpose hardware would greatly improve the 

processing speed. An array processor or i860 based coprocessor board could be used to 

perform the matrix inversions for the facet fits. The 68040 based host processor would 

provide data management by both controlling the wavefront ordering and transferring 

data to the coprocessor. 
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Another speed gain would be realized by improving the energy minimization iteration 

algorithm. Instead of performing numerous raster scans through the data, each of which 

fits a facet at every pixel location repeatedly, a single scan with backtracking could be 

employed. This technique begins by fitting facets at every point along a raster scan to 

insure that the phase plus its fringe offset are within a half a fringe of the estimate. 

Whenever a point is found where the data plus its assigned fringe offset and the estimate 

are more than half a phase step size different, then the fringe number must be altered to 

bring the two within a half phase step size of each other. When a point's value is 

changed, it could affect any member of the neighborhood around the point. Therefore, all 

the points lying within the current point's neighborhood which have previously been 

processed must be re-checked. A stack would be implemented to manage the list of 

pixels requiring reconsideration. As long as points remain in the stack, the next point to 

consider is popped from the top of the stack. If, in processing a point popped from the 

stack, another change occurs, then the neighbors of the newly changed point are also 

placed on the stack, unless they are already somewhere in the stack. Once the stack has 

been emptied, then the raster scan continues where it left off. Processing is complete 

when both the stack is empty and the raster scan has been completed. There is a danger 

that a configuration of pixels could occur in which the fringe number assignments of two 

pixels cause oscillations in each other's values. A flag could be set for each pixel 

indicating that the pixel has previously been changed, and indicating the direction of the 

change. Then, if the routine attempts to change the value back in the opposite direction, a 

warning could be generated and the location skipped. 
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6.2.5 Noise threshold selection enhancement 

While the weighting technique improves the operation of the system, the method suffers 

from high sensitivity to the noise threshold level selected. The user selects a small 

multiple of the noise threshold level for the system to use as the scaling factor in 

computing the weighting function from the modulation magnitudes. The higher the 

measured noise level, the more data get discarded from consideration. But, the noise 

calibration is sensitive to a wide variety of influences in the system. Even stray air 

currents can cause significant changes in the measurement. Since all data below the noise 

threshold are culled, repeated experiments can have varying levels of depopulation of the 

data set for identical user settings. Until techniques are found to further stabilize the 

optical system, such variations will continue to be present. Therefore, an interactive 

technique for selection of the noise threshold where the user is presented with the speckle 

pattern's histogram and allowed to modify the threshold dynamically may be more 

appropriate. By such a technique, as the user alters the threshold value, pixels to be 

discarded can be highlighted dynamically. Thus, the user could use direct feedback to 

choose a level which would leave sufficient numbers of pixels un-culled to provide 

reasonable support for the facet fits. 

6.3 Summation. 

Motivation for the development of this phase unwrapping technique began with the study 

of energy minimization as applied to the object labeling problem for noisy images in 

machine vision. Based on this work, a definition of the energy of a surface was 
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developed such that energy is proportional to the change in slope over a surrounding 

neighborhood. Since full field iterative techniques were deemed to be inappropriate for 

the inherently sequential problem of assigning fringe numbers, techniques for estimating 

surface characteristics based on a set of known neighbor's values seemed the best 

approach to pursue. Facet based surface modeling provides a means of estimating an 

unknown location's value based on known neighbors. Haralick's facet model was 

generalized to work on the sparse, weighted neighborhoods available in the unwrapping 

problem to construct the facet based phase unwrapper. Energy rnininiization is 

accomplished by finding a complete set of fringe number assignments over the non-zero 

weighted locations such that no other arrangement of assignments can be found to give a 

smaller total deviation of the surface from planarity. This background gives the 

technique a solid framework for its construction, and the results show great promise for 

future applications. 
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Appendix A. Mathcad model of the Besselfringe function. 

Mathcad model of a 1-D Bessel function 

Interval of integration: 

Sinusoidal frequency: 

Amplitude sweep step size: 

Half number of points to evaluate: 

Index for first half: 

Index for second half: 

Arguments for the function scaled by step size: 

Arguments for the second half scaled by step size: 

T := 2-71 

w ■= 2-Jt 

AStep := - 
8 

N=20 

i=0..N 

j:=N+1..2-N       k:=0„2-N 

A; := N-AStep - i-AStep 

Bj := G - N)-AStep 

Note: the amplitude of the sinusoid represents increasing amplitude of vibration of the pan under observation. 
Since the vibration will be mirrored and inverse about the nodal line, the second half of the plate is represented 
by a second equation whose sinusoidal vibration is 180 degrees out of phase with the vibration on the first side 
of the plate. 

FT 
Bessel fringe function for first side of plate 

Bessel fringe function for second side of plate 

Functions converted to an array and squared: 

b(A) 
1 

exp(-j -A-sin(wt)) dt 

c(A) =   - 
T 

M: = b A. : 

0 

T 

JO 
exp(-j -A-sin(wt + %)) dt 

M..= cB. 

Plot of the Bessel function squared over the two sides of a vibrating obiec. 
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Mathcad model of a biased Bessel function where the 
bias signal's phase changes. 

Amplitude of the bias signal 

Phase step size: 

Array of phase steps: 

P:=l 

DStep: 

Dk := k-DStep 

Equation for the computation of the Bessel function with a bias signal of varying phase: 

-T 

<*«.|i exp(-j -(P-sir<wt + D) + A-sk(wt)))dt 
0 

2-D array over first half of fringes: 
M.k:=f(Aj,Dk)2 

Second equation for the computation of the Bessel function with a bias signal of varying phase: 

g(A,D) 

2-D array over second half of fringes: 

rT 
exp(-j -(Psii<\vt + D) + A-sir<w-t + K)))dt 

M. k:s*(W 

Surface plot of fringe intensity as a plate vihratessinusoidal Iv and as phase varies 

M 
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Mathcad model of a biased Bessel function where the 
bias signal's amplitude changes. 

Phase of Ihc bias signal: 

Amplitude step size: 

Array of amplitude steps: 

D=0 

PStep 

Pk := k-PStep 

liquation for the compulation of the Bessel function with a bias signal of varying amplitude: 

fT 
f(A,P) exp(-j -(P-sin(wt + D)+A-sin(w-t + 5c)))dt 

0 

2-D array over first half of fringes: Ni,k = f{Ai>rf 

Second equation for the compulation of the Bessel function with a bias signal of varying phase: 

fT 

g(A,P):=(£|- exp(-j -(Psin(wt + D) + A-sin(\vt))) dt 
0 

2-D array over second half of fringes: Ni.k - «(V*)' 

Surface plot of fringe inlensilv as a plate vibratcssinusoidally and as amplitude varies. 

N 
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Appendix B - Soßware Block Diagrams 

B.l Software Block Diagram (Top Level) 

B.2 Data 
Acquisition 

B.3 Phase 
Unwrapping 

T 

1 

B.4 Energy 
Minimization 

Iterations 

Save raw phase 

B.5 Phase 
Smoothing 

Save smoothed phase 

B.2 Data Acquisition Block Diagram. 

Generate 
Holograms 

(2 or 3 for Static 
Time Average) 

Solve for 
Wrapped 

Phase 

Generate 
Modulation 

Map 

Wrapped 
,, Phase Image 

Measure 
Noise 

/ 

Weights 
Image 
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B.3 Phase Unwrapping Block Diagram. 

Wrapped Phase 
Image 

Weights 
Image 

Se ect 1 

Seed Point hit hacet to 
processed 
neighbors 1 

Init FIFO w/ 
Seed Point Estimate 

Fringe 
Number 

Remove next 
Point from 
FIFO head 

~~* Add Unprocessed 
Neighbors to 

FIFO tail 
Dnnnn*   1  l~f.\   CMC i\cpcai \j mi rir \J lb cnipiy 

B.4 Energy Minimization Iterations Block Diagram. 

Repeat until 
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ForEa 
Point 

Process 
Area 

bh 
In 
ng 

Unwrapped Phase 

If Point 
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Data 
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processed 
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Correct 
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Phase 
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B.5 Smoothing Block Diagram. 

Unwrapped Phase 

For Each 
Point in 

Processing 
Area 

It any 
neighbors 
contain data 

hit hacet 
to processec 
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THREE DIMENSIONAL GRAPHICS TECHNIQUES APPLIED TO THE 
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Worcester, MA 01609 

ABSTRACT 

Electro-optic holography (EOH) generates a large array of three-dimensional values (displacement at each 
x, y location) as its final output. In the past, a number of techniques have been employed to display the 
displacement data ranging from topographic maps and enhanced versions of the holograms themselves, through 
fringe skeletonizing, to wire frame surface plots . This paper discusses the application of 3-D shaded rendering 
techniques to holographic displacement data. Both modeling the object and rendering the model are covered. The 
resultant shaded images show the displacements of the surface clearly and the software allows the user complete 
control over the orientation of the view and the characteristics of the light sources. Results are shown for a number 
of modes of vibrating rectangular plates. 

1. INTRODUCTION 

Three-dimensional graphical rendering produces realistic two-dimensional projections of objects existing 
in three dimensions. For any given projection, natural cues provide depth information in the same fashion as an 
observer perceives when a scene is viewed through a window. The rendering software provides control of the 
location of the viewing window, the viewer's focus of attention in the world outside, and the strength and location of 
lights in the world. 

To give the user such flexibility requires both a complete 3-D description of the object to view, or world, 
and a significant number of floating point calculations in the rendering software. As the world becomes more 
complex or detailed, the computational requirements rise and, more importantly, the buffer space requirements 
increase, as well. The memory constraints imposed by the PC-DOS environment would not allow any but the 
simplest world models to be rendered. However, with the advent of MS-Windows, PC software can access all the 
installed memory in the PC and even use virtual memory to allow large enough buffers for very complex rendering 
problems. Due to the near universal availability of PCs and their rapidly improving performance, operating 
software and pricing, we chose to implement our program in this environment. 

EOH, also based on the PC environment, generates an array of displacement data over the surface of the 
object to be measured. These data indicate either the amplitude of vibration or the static deflection at each point in 
the image. Previous methods used for the representation of EOH data include topographic maps, wire frame surface 
plots and even shaded surface plots. These techniques all give indications of trends in the data and show varying 
degrees of detail, but none include the flexibility of 3-D rendering systems for focusing on desired features and 
highlighting subtle variations in the data. By appropriate selection of the values for the lighting and viewing 
controls, the operator can focus the viewers' attention on any detail, and use multiple views to show a variety of 
different features. 
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The 3-D rendering system also provides a further benefit in that the 3-D model of the object is more 
compact than the original representation of the 512x480 array of displacement data points, so the results can be 
stored in a smaller area of a computer's mass storage space. 

2. THREE-DIMENSIONAL GRAPHICS TECHNIQUES: AN OVERVIEW 

2.1. Two step process 

The task of creating 3-D graphics can be conveniently divided into two parts. First, a three-dimensional 
internal representation of the world called the "world model" is generated. Then, a two-dimensional projection of 
the three-dimensional model is created as specified by the values of the viewing parameters. 

2.2. Modeling 

The world model must fully define all the characteristics of the three-dimensional objects to be represented. 
Since an object is seen due to light interacting with its surface, a natural representation defines objects by their skins 
shown as joined planar surface patches. By using triangular patches, maximum flexibility for matching the model 
to the object's geometry results. Triangular patches are necessarily planar, since three points define a plane. Their 
use as the most primitive level of the representation avoids potential ambiguities that could appear using patches 
with non-coplanar vertices. Since any surface can be approximated arbitrarily well by a set of increasingly smaller 
planar patches, the Tenderer's ability to model curved surfaces is not constrained by its reliance on triangular 
patches. Furthermore, many rendering sub-tasks are greatly simplified when the world model is constituted solely 
of such patches. 

In the example discussed herein, the modeling process begins by creating a flat rectangular plate whose 
geometry matches the plate under observation. The operator must supply the plate thickness. Other shapes as well 
as curved surfaces will be added in future work. After the surface has been created, it is subdivided into smaller 
regions.  Each sub-region's vertices are displaced along the z-axis according to the values of the corresponding data 
taken from the holographic results. To reduce the effects of noise in the data, the vertex values can be generated by 
averaging a number of points in a two-dimensional neighborhood around the vertex point. All back surface points 
are displaced by the same offset value to match the front surface. After the model is generated, the modeling 
routine finds the deviation between the surface data values and the planar patches used to model the surface. The 
maximum deviation value is reported to the operator. If the deviation is too large, the operator may choose to 
re-model the surface with a finer mesh. Figure 1 shows a coarse example mesh. 

The model thus generated is stored in a set of three lists: the point list which contains vertex coordinates, 
the edge list which defines all the edges between pairs of points, and the triangle list composed of sets of edges. As 
a convenient byproduct of this storage scheme, all edges are shared by exactly two triangles. So, by storing pointers 
to the two owner triangles sharing a common edge, any triangle's neighbors can easily be located. Quick access to 
the neighbor triangles is essential for efficient smooth shading later in the rendering process. 

2.3. Viewing parameters 

Once the model is built, the operator has the opportunity to adjust the viewing parameters. To achieve the 
most general and complete control of the display, six values are specified: 1) the attention point, which is the spot 
in the world at which the observer looks, 2) the view reference point (VRP), which is the eye location or point from 
which the observer views the world, 3) the head tilt, which corresponds to rotations of the viewer's head from side 
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to side around the axis from the attention point to the VRP, 4) the eye distance, which defines the distance between 
the eye and the projection plane and thus controls the amount of perspective distortion, 5) the horizontal shear 
offset, and 6) the vertical shear offset values, which introduce shearing distortion in the image. These last two 
shear offset values will be neglected for this discussion since perspective shear is neither necessary nor helpful in 
the generation of unambiguous renderings of the data. Figure 2 shows a schematic representation of the viewing 
parameters. 

Attention Point 

Fig. 1. Coarse triangular surface mesh. Fig. 2. Generalized viewing parameters and their 
geometric meaning. 

The set of viewing parameters can be expressed succinctly as a single four by four homogeneous affine 
transformation matrix1. The transformation converts the coordinates of the world model into a new coordinate 
system whose coordinate axes are defined by the VRP, attention point, and head tilt. 

The transformation from the initial coordinate system (x, y, z) to a new coordinate system (U, V, W) can be 
expressed in the matrix MT by placing the U, V, and W unit vectors expressed in the x, y, and z system into the first 

three columns of the matrix. The displacement of the origin is denoted by the vector r. To find the displacement 
expressed in the new coordinate system, find its components along U, V, and W. Place these offset components in 
the fourth row to get the matrix 

MT 

ux    vx Wx    0 

Uy             Vy Wy          0 

u2    vz W2    0 

r»U r»V r^W  1 

(1) 

The perspective distortion, expressed as the distance from the eye to the plane of projection, is given by the 
scalar distance p. The transformation matrix which applies the perspective distortion, M , is given by 

Mn 

10 0 0 

0  10 0 

ooi) 

0 0 0  1 

(2) 
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Now, a single transformation matrix can be generated by combining the matrices MT and M to get the 
combined transformation matrix M, that is, 

Mc = MTMp (3) 

All the data points stored in the point list in the world coordinate system can now be transformed to the 
viewing coordinate system. The transformed points are stored in a new list since the original set of world 
coordinates must be used later in the shading computation. To perform the transformation, each point is 
re-expressed as a one by four homogeneous matrix with a 1 appended as the fourth element. Then, each point 
matrix is multiplied by the combined transformation matrix Mc to get the new point in UVW coordinates. Notice 
that neither the edge list nor the triangle list is affected by this operation, yet all the edges and triangles have also 
been transformed to the new coordinate system automatically. 

The 2-D projection of the transformed system now follows immediately by simply dropping the z 
component of the 3-D coordinate of each point. Before disposing of the z component, however, the value is used in 
the determination of relative depths of points in the new coordinate system. In order to insure that front objects do 
indeed occlude back objects, all of the triangular faces are ordered according to their distance to the eye. During the 
rendering process, the faces are drawn in farthest to closest order so that any overlapping objects are rendered such 
that a closer object's surface overwrites all more distant ones. 

2.4. Shading intensity computation 

As the triangles are drawn, they must be filled with appropriate intensity values subject to the lighting 
parameters specified by the operator. The system employs a lighting model which assumes that the intensity at any 
point on the surface is composed of three parts: 1) reflected ambient glow, 2) diffuse reflection or scattered light, 
and 3) specular reflection or mirrored light. A set of three reflectivity parameters associated with each surface patch 
controls the relative contributions of each type of reflection to the total reflected intensity at each point in the patch. 

The ambient light contributes a constant intensity, /,, to the total which depends only on the ambient 
reflectivity parameter of the surface as 

WA (4) 

where /B is the background intensity of light or ambient glow, and RA is the ambient reflectivity coefficient of the 
surface patch. 

Fig. 3. Diffuse reflection from a surface. Fig. 4. Specular reflection from a surface. 
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Diffuse reflected light contributes ID to the total and is modeled by Lambert's Law which can be expressed 

as 

ID-ILRD^S% , (5) 

where RD is the percentage of incident light which the surface scatters and 9 is the angle between the incident light 
ray and the normal to the surface at the point as shown in Fig. 3. Thus, a surface diffusely reflects the most light 
when the light source is directly above the reflection point. 

Specular reflected intensity, Is, shown in Fig. 4 is computed by the Phong model of specular reflection2, 

and it is defined as 

Is=ILRscosna (6) 

In Eq. 6, Rs is the percentage of incident light which is mirrored and a is the angle between the reflected 
beam and the line from the viewer to the reflection point. Note that the reflected beam leaves the surface at the 
same angle with respect to the normal to the surface as the angle of the incident beam. The cosine function is raised 
to the nth power, where n is an integer value between 50 and 200 (we used 100). As a result, specular reflection is 
practically zero for all viewing angles except when the viewer's eye is very near the ray produced by the reflected 
beam. As the eye moves nearer to the beam, the specular component of the total intensity rises quickly. This sharp 
increase in the intensity due to specular reflection causes glinting highlights on curved surfaces and larger saturated 
areas on flat planes. 

Since the system allows up to ten light sources to contribute to the light reflected from a point, the total 
intensity, IT, at a given point can be found from the sum of the ambient intensity with all the diffuse and specular 
reflected intensities generated by the light sources, that is, 

IT = IA + ECD, +IS) = IBRA + £ //.,.(«D,cose + /?s,.cos',a) (7) 

where N is the number of light sources. 

Each triangle's normal is precomputed earlier during the modeling phase. The normal, still in world 
coordinates, is used during the computation of the intensity for each vertex of the triangle. All the intensity values 
are computed in the world coordinate system to avoid difficulties introduced by the perspective distortion of the x 
and y components for varying depths (z distances). To compute the specular reflection, the eye location in the 
world (x, y, z) coordinate system, is subjected to the inverse of the viewing transformation. By inversely 
transforming the eye coordinates, the same effect results as does from transforming the entire world. This approach 
allows easy calculation of the irradiance at each point in the world coordinate system. The irradiances thus 
computed map directly into the viewing coordinate system for use in rendering. 

2.5. Smooth shading 

One of two shading strategies may be used in the software: either flat shading or Gouraud shading. For flat 
shading, the intensity of each triangle is computed at each of its vertices, then averaged. This average intensity is 
used to fill the entire triangle. Gouraud shading1 smoothes the image by interpolating intensities. First, the intensity 
at each vertex is computed. However, instead of using the normal to only the current triangle in the computation, 
the normal used is the average of the normals of each triangle which shares the same vertex point. Then, the 
intensity values are interpolated between each pair of vertices and along each scan line while filling the area. This 
smoothing strategy eliminates sharp edges between patches on the same surface at a minimal computational cost. 
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The combination of MS-Windows and a Super VGA display allows selection of 256 colors from a palette 
of more than 256 thousand available colors. However, typical D/A converters used in PC video adapters only 
operate on the most significant 6 bits of the supplied data. As a result, only 64 gray shades can be generated. With 
only 64 shades available, the smooth shading outlined above produces clearly discernible gradients in the image. 
Ideally, textured surfaces or variations in a surface's finish would be used to remove the unwanted gradients. A 
surface finish or pattern can be modeled by introducing small programmed or random changes in the surface normal 
at each point prior to computing the intensity values. However, since Gouraud shading operates by intensity 
interpolation, changes to the normals would affect each whole triangular patch. As an alternative to employing a 
real world model of the surface for gradient banding suppression, these gradients can easily be eliminated by adding 
a small magnitude, signed random value to each computed pixel's intensity value prior to rendering the pixel 

3. ELECTRO-OPTIC HOLOGRAPHY 

The Eiectro-Optic Holography (EOH) system measures irradiances produced by mutual interference of the 
object and the reference fields measured electronically by a CCD camera. Processing of this interferametrie 
information and display of results are carried out concomitantiy with measurements of the irradiances.''*' 

In the EÖH system, the laser output is divided into two beams by means of a continuously variable 
beamsplitter. One of these beams is directed via a piezo-electrically driven mirror and is shaped by the spatial filter 
beam expander assembly to illuminate the object uniformly; this mirror can be driven at the same frequency as the 
object excitation to provide bias modulation. The other beam, also spatially filtered and expanded, is directed 
toward the reference input of the speckle interferometer by another piezo-eleeticaliy driven mirror which introduces 
90* phase steps between consecutive frames. The speckle interferometer combines the object beam with the 
reference beam and directs them coiinearly toward the detector array of the CCD camera. The camera detects the 
interference pattern and sends it to the processor which operates under control of the host computer. The host 
computer also controls excitation of the object, coordinates it with the bias modulation imposed on the object beam, 
and keeps track of the 90° phase steps between the frames. 

Fig. 5. Dispiayable versions of data mode holograms used to generate a surface deflection map. 
A 1/16 inch thick cantilever aluminum plate was clamped to a PZT mount and driven as 2118 Hz. 
The images were produced with a negative phase bias, zero bias, and a positive phase bias fron? 
left to right, respectively. Notice that the two central bullseye patterns are different sizes in the 
two images with phase, biases applied. The shifted fringes carry the information that allows the 
phase unwrapping software to distinguish areas moving toward the camera from areas moving 

away. 
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4. RESULTS 

Rendered 3-D shaded images generated by the program are shown in Figs 6 and 7. The laser printer 
generated images' quality is sufficient to show the points of interest in each example. However, dramatically better 
print quality isaehievable with either 35mm photographs of the monitor or video printer output. 

4.1. Source images 

In the EOH system, the data provided by the CCD camera are processed for every pixel in the image frame 
: the rate of 30 frames per second. Each frame contains 512x480 8-bit numbers and consists of 245,760 points. 

Quantitative data on the object displacements are obtained by processing she images using procedures of 
Reference 4. These procedures extract data from electronically recorded holograms by a method of optical fringe 
shifting. In this approach, the nearly periodic nature of the J0 fringes is utilized to obtain an approximate solution 
for tlw fringe-locus function. This approximate solution recognizes that the general solution representing the 
irradiancc of an image reconstructed from a time-average hologram is similar to the general equation for the 
irradianee distribution for an image reconstructed from a conventional double-exposure hologram wtth eosinusoidal 
fringes. The approximate solution differs from the correct solution because of the inequality between the Bessei and 
the cosinusoidal fringes and the two are related to each other via an error. This error is computed in terms of the 
frinse-locus function, for a specific value of the bias modulation, to create a lookup table. The lookup table is used 
to determine the correct values of the fringe-locus function based on approximate results. Once the correct values 
of the fringe-locus function are determined, they are used to compute displacements of a vibrating object. 
Representative results of such computations are shown in Figs 6 and 7. 

4.2. Multiple views 

Often more than one view of an object leads to a much clearer understanding of its shape and features. The 
sequence of images in Figs 6 and 7 show two sets of views of the same object under two different conditions of 
excitation. In Fig. 6, multiple views were generated by changing the scaling factor applied to the data when the 
mode! was generated. The resulting set of images shows the motion of the object over one half cycle of the 

vibration. 

Fig. 6. Shows a set of five hnges created with z scaling factors, ranging from -1 to ! by steps 
of 0.5. The scaling factors were multiplied by the displacement data to compute the 

displacement of the model's surface for each image. The resulting set of images mimics the 
displacement that the surface undergoes as the pant vibrates at 640 Hz. This capability is 

particularly useful in animation of the experimental results. 
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Figure 7 shows a set of images of the same displacement pattern from a range of view points. Notice the 
extra lump in the upper left corner of the plate in the first image. The phase unwrapping program encountered 
sufficient noise in the image to introduce an unnecessary In transition along a portion of one row of pixels. Such 
deviations are clearly distinguishable with 3-D rendering, but much less so with other methods of data 
representation. 

Fig. 7. The set of five images, progressing from left to right, show a "fly-by" as the viewer moves 
around the object counter-clockwise. The displacements at 2118 Hz were extracted from the 

holograms shown in Fig. 5. The lighting remains fixed relative to the world of the object. 

4.3. Variations of sampling resolution 

Finer grid spacing in the triangular mesh reveals increasing amounts of surface texture in the images. The 
texture results from noise in the source holograms or systematic errors in tuning various experimental parameters. 
Any changes in the driving frequency among the three holograms due to instability of the excitation source tends to 
displace the fringes. A similar displacement results from mis-calibration of the phase bias signal. Such 
displacements manifest themselves as lumpy ridges in the data lying along the fringe lines. Examples of the iumpy 
ridse effect are shown in Fig. 8. 

Fig. 8. Two mode shapes of the plate showing ridges that align with the fringes in the holograms 
from which the displacement maps were created. The result on the left corresponds to the plate 

driven at 601 Hz and on the right driven at 1082 Hz. The image on the right shows as much 
surface variation due to noise in the data as to fringe ridges while the image on the left shows 

very strong fringe ridges. The ridges in the left hand image most likely resulted from inaccurate 
phase bias settings. 
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5. CONCLUSIONS 

The program outlined in this paper generates exaggerated photo-realistic images of vibratory displacements 
of rectangular plates. A set of interactive dialog windows give the operator complete control to produce images of 
the displacements from any viewpoint. As many as ten independent light sources illuminate the object and the user 
can control their placements and intensities. The resultant images are simple to comprehend, and they contain 
shading, shape, and occlusion depth cues. Subtle surface features that can easily be lost with other means of data 
representation are immediately clear and recognizable. The pictures are appealing to the eye, as well. As seen in 
the results presented in this paper, 3-D rendering can clearly show otherwise unnoticeable patterns such as residual 
inconsistencies corresponding to fringes in the original holograms. Thus, the more complete data representation 
which the 3-D images give can help to locate systematic errors or unexpected variations in the data. 

While the current program is limited to rectangular flat objects, much of the same code can be applied to 
non-rectangular surfaces and to curved surfaces. The representation of displacements on curved surfaces introduces 
new challenges that may require the use of color to indicate movement, translucent undeformed and deformed 
objects overlapping, or even a combination of the two approaches. Further enhancements will include scaled axes, 
annotation capabilities, topographic and grid overlays and improved interactive controls for selecting viewing 
parameters and lighting arrangements. 

This three-dimensional data representation approach has already helped to improve the results obtained by 
EOH and promises to contribute still more to our understanding and presentation capabilities in the future. 
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Phase unwrapping by least squares error minimization of phase curvature 

Thomas W. Bushman, Michael A. Gennert, and Ryszard J. Pryputniewicz 

Worcester Polytechnic Institute 
Worcester, MA 01609 

ABSTRACT 

A new method of unwrapping two-dimensional periodically discontinuous phase data is developed in this paper and 
results from application of the method to electro-optically generated phase data are presented. The method, whose 
foundations lie in the minimization of the energy of the surface determined by the unwrapped data, fits planar surface patches 
to previously processed data, then uses the best fit plane's parameters to estimate the value of the pixel under consideration. 
At each pixel, a new value composed of the sum of the original value and an integral multiple of the magnitude of the phase 
discontinuity is assigned. Processing proceeds along an expanding wavefront originating from a seed point chosen as the 
reference for the measurement. The facet based fringe number selection method has been found to be highly reliable even for 
incomplete, noisy data. 

1. INTRODUCTION 

This paper describes the phase unwrapping algorithm implemented as a part of a complete, integrated electro-optic 
holographic interferometry system. The approach, and much of the code are, however, system independent and should 
provide reliable phase unwrapping for any 2-dimensional array of wrapped phase data which does not contain internal 
inconsistencies or discontinuities in the phase. 

1.1. Problem overview 

An electro-optic holography (EOH) system can produce phase maps proportional to surface deformations resulting from 
either resonant vibration or static displacement of a test part. Vibrations are measured with an electronic form of 
time-average holography while static displacements are measured with an electronic form of double-exposure holography 
usually referred to as static EOH. The magnitude of the displacement can be related to the phase by a simple geometric 
argument, and depends on the orientation of the illumination and viewing vectors as well as the wavelength of the laser light 
used to illuminate the part. Unfortunately, due to the periodic wavelike nature of light, the solutions by which the phase is 
derived are inherently discontinuous at regular intervals. The discontinuities follow from the presence of the inverse tangent 
function in each of the solutions. Each discontinuity corresponds to a 271 or n jump in the phase for static and time-average 
mode holograms, respectively. These discontinuities must be removed by addition of a fringe number dependent multiple of 
the magnitude of the phase jump at each point in the image. 

To remove discontinuities, the unwrapped phase at any point is calculated to be the data at that point added to the 
product of the fringe number and the phase jump magnitude. Thus, the value at any point in the unwrapped image depends 
on the fringe number assigned. The fringe number, in turn, depends on the number of fringes crossed in moving to that point 
from an initial location chosen to be the origin. Each pixel's dependence on previously processed neighbors suggests that the 
fringe number at a new location can be determined by the following two step process. First, compute the magnitude of the 
difference between the new pixel and one of its previously processed neighbors, then, second, assign the new pixel's fringe 
number to be either the same, one greater or one less than its neighbor's depending on whether the difference between the two 
is less than a phase jump in magnitude or greater than a phase jump in the positive direction, or in the negative direction, 
respectively. This solution works when the signal to noise ratio (SNR) of the image is high. However, as the noise increases. 

For correspondence please contact: Ryszard J. Pryputniewicz, Center for Holographic Studies and Laser Technology, Dept. of 
Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609. 
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this approach can break down due to rounding of the sharp discontinuities which are expected. Specifically, when one of the 
phase jumps is rounded, the magnitude of the difference between the new point and its neighbor is no longer greater than the 
chosen threshold anywhere across the edge. As a result, no phase jump is found and the fringe number assignment is 
incorrect. Furthermore, since each point's fringe number assignment depends on the assignments made for its previously 
processed neighbors, errors in the assignments propagate to every subsequent pixel after a mistake has been made. 

Further problems result when actual discontinuities exist in the phase data due to abutting or overlapping, but 
independently moving surfaces in the field of view. At such joints, extra discontinuities appear in the wrapped phase map, 
further complicating the unwrapping problem. This paper gives a robust algorithm for unwrapping phase in the presence of 
noisy data, but does not address the difficulties introduced by phase discontinuities created by joints in the object under 
observation. 

1.2. Previous approaches 

In a perfect image of wrapped phase, the task of unwrapping is a straight forward operation. Itoh gave a rigorous 
analysis of the scan line based approach to 2-dimensional phase unwrapping in 1982 '. He showed that, for a consistent set of 
fringes, first unwrapping along one column, then along each row using the unwrapped value from the initial column as a 
reference, gives valid results regardless of the location of the initial column. Identical results can also be achieved by 
operating first on one row, then on all the columns. The unwrapping operation proceeds by comparing successive pairs of 
pixel values. A threshold value is chosen to be slightly smaller than the magnitude of the wrapped phase jump. Then, 
whenever the magnitude of the difference is larger than the threshold, the fringe number is incremented or decremented 
appropriately. 

Stetson implemented an algorithm to unwrap phase which works for arbitrarily shaped objects, provided a "mask" can 
be generated to distinguish the object from the background 2. Unwrapping proceeds around the interior of the object's border 
and works its way inward. This approach has the advantage that it can be applied to any shapes, but still suffers from high 
susceptibility to noise. 

A procedure based on cellular automata has been implemented by Ghiglia, Mastin, and Romero \ This iterative 
procedure operates on the entire image for many iterations before converging. Since the computational burden of this 
approach is too high for frequent experimentation, another approach was sought in this study. 

Vrooman and Maas use an approach that turns out to be very similar to the software described here, but with some 
important exceptions 4. Their system uses an expanding wavefront growing out from a starting location, and also uses the 
magnitude of the modulation at each speckle to weed out bad data. They do not, however, use weighted facets as estimators 
for the phase. 

1.3. Facet based unwrapping 

The facet based technique for unwrapping noisy wrapped phase maps can be summarized by the following procedure: 

1) begin processing by choosing a seed point from which to start the operation, 
2) at each point along an expanding wavefront growing outward from the seed: 

2.1) fit a planar facet to previously processed data within a given neighborhood around the new point, 
2.2) use the facet coefficients to estimate the phase at the new point, 
2.3) choose a fringe number for the new point to minimize the difference between the estimated and 

measured values, 
3) stop when the wavefront hits boundaries or edges. 

The procedure outlined above is both robust and reliable for unwrapping noisy wrapped phase maps. The algorithm 
implementing this procedure consistently succeeds in unwrapping fringes with spacing as small as six pixels. Phase maps 
created from electronically generated time-average holograms with Bessel function distributed fringe intensities have been 
unwrapped out to the thirtieth order fringe. In situations where the unwrapper fails, the failure is easily detected within a few 
pixels of the initial mistake since the fitting error between the facet and the underlying data increases rapidly as the error 
propagates. 

D-4 

SPIE Vol. 2003 Interferometry VI (1993) I 335 



2. ELECTRO-OPTIC HOLOGRAPHY: THEORETICAL OVERVIEW 

The EOH system used to capture the data presented here employs techniques previously developed by Stetson and 
Brohinsky 5\ Stetson and Pryputniewicz \ Pryputniewicz \ and Bushman \ All full field, real-time processing required for 
the implementation is carried out on an MV200 pipelined image processor in a MaxTD image processing system from 
Datacube, Inc. The Motorola 68040 VME bus based host computer for the image processing system executes the phase 
unwrapping algorithm. 

2.1. EOH system components 

The optical system, Fig. 1, consists of a laser, mirrors, a piezoelectric transducer (PZT) mirror mount, beam expanding 
lenses, an imaging lens, and a CCD camera. The coherent light beam generated by the laser is split by a half silvered mirror 
into two portions, the object and the reference beams. The object beam is diverged sufficiently to illuminate the entire object, 
then the image is focused onto the CCD camera sensor by the imaging lens. Meanwhile, the reference beam is diverged and 
recombined with the object beam at a partially silvered mirror immediately in front of the camera. When the two beams 
intersect, the coherent light fields interfere. The CCD camera integrates the intensity of the resulting light field over each 
l/30th second frame time. A mirror in the reference beam path is mounted on a PZT positioner such that when a small, 
computer controlled voltage is applied across the PZT leads, the reference beam's path length is changed by a very small, but 
carefully controlled amount. A routine within the image processor automatically determines the size of the voltage step 
required to change the path length of the beam by exactly 1/4 of the wave length of the laser light. This mechanism allows 
for stepping the phase of one beam relative to the other. The image from the CCD camera is fed to the image processor for 
capture, manipulation, and display. 

Laser 

Beam N 
Splitter 

Mirro 

Test Part 

Beam      <^ 
Expanding •"■ 
Lens 

Mirror Mounted 
on PZT Positioner 

Imaging ^ 
Lens 

Mirror roi\ 
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Legend 

.  Object Beam 

Reference Beam 

-  Both Beams 

CCD 
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Computer 
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X 
I 

2. 
Computer 

and Image 
Processor 

Fig. Electro-optic holography apparatus. 

A coherent, linearly polarized planar light field, as generated by the laser, can be described by the solution to Maxwell's 
equations as 

F{x, y, t) = 3ie{A(x, y)exp[-i((üt - <p(jc, y))]}. (1) 

According to Eq. 1, the electric field, F, along the axis defined by the polarization of the light depends on the amplitude. A, 
and phase, <p, given as a function of absolute position specified by the x, y coordinates. Because of the inherent 
characteristics of the laser light, the time dependent term in Eq. 1 can safely be ignored, and the resulting formulation 
provides the basis for the development of the equations for static and time-average holography which follow. 

Light reflected from the surface of the object under study is imaged by the camera through the finite aperture of the 
imaging lens. Facets in the surface microstructure reflect the light in various directions over each small portion of the surface 
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area. When the image of the surface is formed, each pixel in the sensor receives light from an area of the object surface 
whose size depends on the size of the aperture. For smaller apertures, fewer distinct facets of the surface microstructure 
contribute to the light received. This results in a larger scale speckle pattern as viewed by the camera. For EOH systems, 
each pixel must contain no more than a single speckle. When the phase of the reference beam is deliberately changed relative 
to the object beam, then the interference between a speckle on the object's surface and the reference beam will also change. 
For example, if, prior to the phase change, the speckle and the reference beam have identical phase, then the light interferes 
constructively and the intensity measured at the camera is high. When the phase of the reference beam is changed by 180°, 
then the speckle and the beam have opposite phase so they interfere destructively. As a result, the intensity at the camera is 
low. The modulation of speckles by phase shifting one beam relative to the other provides the mechanism which allows the 
electro-optic systems to function. 

2.2. Static mode EOH 

In static mode, the EOH system generates a hologram whose fringes indicate static deformation of the surface of the 
object "'. To produce these results, two sets of images are captured, with the state of stress changed between the two. Each 
image set is composed of four frames, where a phase increment is added to the reference beam relative to the object beam 
between each frame in the set8. 

The two beams which interact at the beam combiner can be described by 

F„(x,y) = Al>(x,y)exp[iy0{x,y)] (2) 

and 

Fr(x,y)=Ar(x,y)exp[i(pr(x,y)) , (3) 

where Fn and Fr represent the object beam and the reference beam, respectively. 

When the two beams interact, the intensity measured at the CCD array of the camera is given by the complex magnitude 
of the sum of Eqs 2 and 3, that is, 

l(x,y) = [FAx,y) + F,(x,y)}{FM,y) + Fr(x,y)]*=Iu(x,y)+lr(x,y) + 2Al,(x,y)Ar{x,y)cosA<p(x,y) , (4) 

where I„(x,y)=A7,(x,y), Ir(x,y) = A7-(x,y) and A<p(x,y) = <p0(x,y) - <Pr(x,y). Equation 4 represents the pixel intensities of a 
frame of data captured by the image processing system prior to the introduction of phase shifts. 

In the following discussion, the x and y arguments of the functions are dropped to simplify the mathematical 
formulation, and constant factors from Eq. 4 are grouped so that C = 1,,+Ir and D = 2A„Ar. A phase step of 90° is introduced 
between frames of video data by translating the PZT mounted mirror to a new position such that the path length of the 
reference beam is exactly one quarter wavelength shorter. Then a four image, phase stepped set of reference images captured 
prior to the deformation of the object can be described by the following set of equations: 

/, = C + DcosA<p ,   /2 = C + DsinA(p ,    h = C-DcosAcp and    /4 = C-DsinAcp . (5) 

The set of images captured after the deformation can be described by four more equations: 

l\=C+ D'cos, A<$>! ,    l'2=C'+D'sinA(p' ,    I/i=C'-D'cosAy' and   74 = C/-D/sinA(p/ .   (6) 

The deformation must be small enough so that the speckle pattern does not decorrelate, and the experimental environment 
must be stable so that random fluctuations of the phase are held to a minimum. Assuming these conditions to hold, then 
C' -C andZ)' =£>. Finally, let Q = Atp-Acp', then the following two combinations of the eight images, described by Eqs 5 
and 6, can be formed which, when simplified, yield a pair of images dependent only on the sine and cosine of the difference 
in phase between the light field prior to the deformation and the light field subsequent to the deformation, that is, 

16D2sinQ=[(/l-/.0 + (//2-//
4)]2+[(/2-/4) + (/|-/3)]2-[(/i-AO-(//2-//4)]2-[(/2-/4)-(/'-/3)]2 (7) 

and 

16D\-OsQ = [(/,-/3) + (/'-/3)]2+[(/2-/4) + (//2-/4)]2-[(/l-/.0-(/2-//4)]2-[(/2-/4)-(/(-/3)]2  - (8) 

The measured change in phase due to the deformation, Q', can then be found from the inverse tangent of the ratio of Eqs 7 
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Q' = aictan(^ft). (9) \cosQJ 

where Cl is referred to as the fringe-locus function, constant values of which define fringe loci on the object's surface. 

Notice that, due to the arctan function, the measured phase difference function, Q!(x, y), wraps back to zero each time 
the actual phase difference function, Q(x,y), passes through (27V- l)jt, where N is an integer. These discontinuities must be 
removed by the phase unwrapper to reconstruct a continuous phase function from which actual displacement values can be 
computed. 

2.3. Time-average mode EOH 

In time-average mode, the EOH system generates a hologram whose fringes indicate the amplitude of vibration of the 
surface of the object'". To produce these results, one set of images is captured as the test part undergoes sinusoidal vibration 
in a standing wave pattern - a resonant mode. The image set is composed of four images, where a phase increment is added 
to the reference beam relative to the object beam between each frame in the set5'™. 

The two beams which interact at the beam combiner can be described by 

F„(x,y) = A„(x,y)exp{i[q(,(x,y) + K(x,y) • L(.v,;y)sincuf]} and (10) 

Fr(x,y)=Ar(x,y)exp[i(pr(x,y)] • (11) 

The second term in the exponential of Eq. 10 describes the time dependent variation of the phase of the object beam which 
results from the sinusoidal motion of the object at frequency co. The vector K denotes the sensitivity vector which bisects the 
angle formed by the illumination and observation vectors, and the vector L denotes the displacement of the object for each 
point in the image. The sinusoidal term accounts for the motion of the object over the interval during which the camera 
integrates light to collect a frame of data. 

When the two beams interact, the intensity measured at the CCD array of the camera is given by the real part of the 
time-average of the complex magnitude of the sum of the beams' electric fields defined by Eqs 10 and 11, that is, 

[      T ] 

Substituting A(p for (po - (pr, Eq. 12 can be expanded and simplified to give 

f    T ) 
I(x,y)=A7,(x,y)+A7(x;y) + 2A„(x,y)Ar(x,y)cosA(p{x,y){ ^ fcos[K(jc,y)»L(jt,y)sinüW]^ .        (13) 

tro J 
The integral at the end of Eq. 13 is often referred to as the characteristic fringe function and denoted by M[Q(x,y)]. In 
general, 

T 

lim i \cos[K(x,y)»L(x,y)sin(£>t)dt=J0[£l(x,y)] (14) 

is a zero order Bessel function of the first kind, where Q.(x,y) = K(x,y) • L(x,y). For time-average holography, where the 
integration period, T, is the frame time of the camera, the characteristic fringe function will be J0[Cl(x, y)\ when co « 7", that 
is. as long as the period of the vibration of the object is much smaller than 1 /30th of a second. In practice, frequencies of 60 
Hz and higher give good results. 

For the remainder of the discussion, the x and y arguments of the functions are dropped to simplify the mathematical 
formulation, and constants in Eq. 13 are grouped so that C - /„+/,• = Al +A7 and D = 2A„Ar . Once again, a phase step of 
90° is introduced between frames of video data. Then, a phase stepped set of four images as captured by the image processor 
can be described by the following set of equations: 

/, =C+DcosA(fJ0(Q) ,    I2 = C + DsinA(fx/0(Ü) ,    h = C-£>cosA(fx/0(Q) and    /4 = C-Z>sin A<pJ0(a) . (15) 
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The deformation must be small enough so that the speckle pattern does not decorrelate. Then, all the C's and all the D's in 
Eq. 15 are equal and the four equations can be solved to eliminate C and A(p yielding 

Ihl =AD2jl{Q) = {h -h)2+{h-h)2 ■ 06) 

According to Eq. 16, the resulting hologram, /A), is defined in terms of three unknowns, A2, and A? comprising D2, and Q 
contained in the argument of the J„. In order to solve for Q, two additional equations must be generated in such a way that 
the three unknowns are related in three equations. This is accomplished by introducing a bias signal on the reference beam to 
shift the Bessel function fringe pattern by a known amount, first to one side, then to the other side of the unbiased fringes. 

A bias signal with an amplitude denoted by B, and phase such that the phases of the two beams are identical at the 
camera, adds a new term to the expression which describes the reference beam so that 

FNr=Ar(x,y)exp{i[(?r(x,y)+Bsm((öt)]} . (17) 

where the subscript N indicates the negative biased beam and the small subscript r is used to denote the reference beam. 

Equation 17 represents the electric field of the reference beam modulated by the sinusoidal bias signal for the first of the two 
biased results called the negative biased hologram. The biased reference beam interacts with the object beam represented in 
Eq. 10 to give an intensity at the camera of 

f   T 1 IN = [Fl>+FNJF0 + FNX=A2o+Alr
+UoANrcosA<p\jlcos[(K'L-B)sin(ot)dt^ , (18) 

Again, a set of four phase stepped images derived from Eq. 18 and identical to Eq. 15 except for the bias, is captured. The 
negative biased hologram is computed from these four images as 

lhl = 4D2J2
0{Q-B) = (IN] -I^)2 + (h2-INi)

2 . (19) 

The third result, called the positive biased hologram, is generated by changing the phase of the bias signal by 180°. 
Then, the reference beam can be represented by 

FPr =A,exp{/[())r + Ssin(cof + 7t)]}=A,exp{/[<}),-i5sin(cof)]}. (20) 

where the subscript P indicates the positive biased beam and the small subscript r is used to denote the reference beam. The 
positive biased reference beam interacts with the object beam in Eq. 10 to give an intensity at the camera of 

f    T 1 
lP = [F<, + Fpr][F0+Fpr]'=Al+A}r + 2A0APrcosA(f{ ^ jcos((K• L+B)sm®t)dt\ , (21) 

I    o J 
Again, the positive biased hologram is computed from a set of four phase stepped images derived from Eq. 21 to give 

/,„ =4D2J2
0(n + B) = (.IPl -Ip,)2 + (Jp2-IPi)

2 ■ (22) 

Now we have three equations, given by Eqs 16, 19 and 22, written in terms of the three unknowns. The exact solution 
for Q. is not simple since the Bessel function is both nonlinear and non-periodic. However, an approximate solution is 
possible if the fringe function is assumed to be a cosine squared rather than a Bessel function squared. This assumption 
introduces errors in the computed results, but these errors are directly dependent on the computed phase value and can be 
corrected after the phase is unwrapped by indexing into an appropriate lookup table (LUT). 

The solution for the phase at each point, assuming the hologram contains cosine squared fringes is 

l-cos2ß^     h,~h2 Q = - arctan 
sin2ß   J2Ih-Ih-Jh, 7,      -n3      *«2J 

(23) 

Notice that, similar to static mode, values for the solution wrap back to zero each time the argument of the arctan function 
passes across a (2/V - 1 )^ boundary, where N are integer values. These discontinuities must be removed by unwrapping the 
phase to build the continuous phase function required to perform the correction and subsequently compute actual 
displacement values from the data. 

The unwrapped Qvalues thus computed are corrected by indexing into an LUT generated by finding the inverse 
mapping to translate from the phase found assuming cosine squared fringes to the correct phase resulting from Bessel squared 
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fringes. To build such a LUT, first an array is filled with values corresponding to a sampled set of all possible values that the 
processed data may take. Such an array can be computed by 

jl(gB+B)-Jl{QB-B) 
LUT(D,B) = ^arctan 

1 - cos 2B 

sin2ß   J2J2
0(ClB)-J

2
0(nB+B)-J2

0{nB-B) 
(24) 

Second, the LUT must be inverted to map from the assumed cosine 
squared fringe domain to the actual Bessel squared fringe domain. 
Values for the correction LUT are computed at points separated by a 
fixed interval in the Bessel phase argument, QB. When the LUT is 
inverted, the intervals between LUT entries are no longer uniform, so 
care must be taken that an interpolation procedure computes the new 
values for the inverse LUT at regular intervals in the inverse domain. 
The inverse LUT is denoted by LUTX (Q.B). 

The correction is applied after the phase is unwrapped to 
compute the actual phase of the Bessel squared fringes, £2C, and takes 

the form of 

Q.c = LUT-l(Q.,) (25) 

at every point in the image, where the / subscript indicates that the 
value of the uncorrected phase is quantized, then used as an index into 
the correction table. Figure 2 shows the correction LUT over the 
range of the first four Bessel squared fringes in an unbiased hologram. 

PHASE ASSUMING 
OOSINUSOIDAL FRINGES, nid 

Fig. 2. Correction lookup table. 

3. PHASE UNWRAPPING BY FACET BASED ESTIMATION 

Motivation for the facet based approach to phase unwrapping grew from a study of energy minimization techniques 
applied to early vision problems. Geman and Geman used a simulated annealing algorithm to generate the lowest energy 
configuration of pixel values in the context of recovering the original data from a noise contaminated image ". The 
simulated annealing algorithm operates on subsets of the neighborhood surrounding a pixel called cliques. Iterations of the 
algorithm seek to minimize the interaction potential energy among members of each clique. By this definition, higher energy 
values are assigned as the surface whose height is determined by the pixel values diverges from horizontal and planar. To 
reconstruct a continuous phase surface from the discontinuous wrapped phase, the energy to be minimized must be redefined 
to allow surfaces of any slope, as long as the slope changes smoothly. Thus, for phase unwrapping, we wish to minimize the 
curvature of the phase surface. 

To determine the fringe number at a point in the image, we wish to use the noisy, often incomplete data provided by the 
point's neighbors to "guess" at an appropriate value for the phase at the point. Haralick describes a technique for fitting a 
facet described by a set of orthogonal polynomials to noisy data in order to subsequently locate the best edge contained within 
the boundaries of the facetl2. His implementation uses polynomials up to third order to match the polynomial model to the 
image data, and performs a least squares error fit to determine the values for the coefficients of the polynomials. These 
coefficients can then be used to find the location and direction of the highest slope in the facet. For our purposes, a first order 
planar fit is used to fit the facets to the data. By fitting a plane to the phase, the fit's sensitivity to noise is minimized, and the 
estimate for the phase will be the value which minimizes the curvature of the phase surface. 

Based on the foundation of these image processing and machine vision techniques, the phase unwrapping approach 
outlined in Sections 3.1 through 3.4 has been developed. 

3.1. Weighting function 

As mentioned at the beginning of Section 2, each pixel in the image is exposed to either one or a portion of one speckle 
generated by the reflected light from the object. The image created in the EOH process can be conceived of as a measure of 
the modulation induced in each speckle by changing the phase of one of the two beams relative to the other. Because the 
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dynamic range of the imaging system is limited and noise is always present due to the electronics in the system as well as 
other influences, those pixels which have low modulation relative to the noise provide less trustworthy results. In order to 
make more meaningful estimates for the phase value at each point, the magnitude of each speckle's modulation can be used to 
weight the speckles in the facet fitting routine. 

An image of the magnitude of each speckle's modulation is generated by capturing time-average data of the object at 
rest. Pixels whose modulation magnitudes do not exceed the system's noise level do not contribute meaningful information to 
the image. Therefore, they are removed from consideration by setting their weights to zero. This is accomplished by a two 
step process: first, measure the level of system noise by capturing the difference between frames of data without any phase 
stepping. Second, divide all the modulation magnitude pixel values by the measured noise level and truncate to integer 
values. This procedure generates a weight function with zero values where the data cannot be trusted and small integer 
weights whose values increase with greater reliability. 

3.2. Processing order 

Unwrapping proceeds along an expanding wavefront emanating from a user selected seed point. The seed is generally 
chosen to lie within a stationary node in time-average holograms, or within a fringe abutting a fixed boundary in static 
holograms. The 8-connected neighbors of the seed pixel whose weights are greater than zero are placed in a first-in-first-out 
(FIFO) list. Processing progresses by removing the next pixel from the head of the list, assigning it a fringe number, then 
placing all of its 8-connected neighbors whose weights are not zero and who have not previously been put into the list at the 
tail of the list. This processing order gives the appearance of a wavefront propagating outward from the seed and is 
guaranteed to visit every pixel which has an 8-connected path back to the seed by way of non-zero weighted pixels. As each 
pixel is put into the list, it is marked with a flag bit to indicate that it has already been visited and should not be put into the 
list again. Also, another flag bit is set to indicate that a pixel has had a fringe number assigned. Only those pixels which 
have been thus marked are used in the facet for estimating the phase of subsequent pixels. 

3.3. Planar facet parameter computation 

As each pixel is taken from the list to have its fringe number assigned, a rectangular region around the pixel is used to 
estimate what the phase at that point should be. As the total area of the rectangle increases, processing time also increases, 
but the estimates become less sensitive to noise. When the facets grow as large as the features of the surface determined by 
the unwrapped phase, then the estimates will fail to follow the contours of the surface and the unwrapping will fail. 
Empirical evidence has shown that facets which are no larger than the span of the narrowest fringes, but are at least 7x7 
pixels in size, perform well. 

Data values are weighted and tend to be clustered in one region of the facet since only those members of the 
neighborhood which have already been processed are considered when computing the facet parameters. Therefore, a 
generalized least squares fit must be used, and simplifications which are normally possible with a model composed of an 
orthogonal polynomial set cannot be made. Planar facets can be modeled by a function composed of the linear combination 
of a set of O'th and 1 'st order polynomials as 

P(x,y)=Ax + By + C . (26) 

To find the best fit of the model with the data, the square of the error of the model, P(x, y), relative to the data, z(x, y), 
must be minimized. The squared error, e2, is computed from the sum of the squares of the deviations at each point, scaled by 
the weight function, represented by w(x, y), over a neighborhood of horizontal extent 2N+1 and vertical extent 2M+1, 
centered at the point (x, y), so l? 

t\x,y)=   I   I {[P(iJ)-z(x + i,y+j)]w(x + i,y+j)}2 = 
j=-M i=-N 

M       N . 

=  11 {\Ai+Bj + C-z(x + i,v + j)}w{x + Ly+j)}~. (27) 
j=-M i=-N 

Note that w(x, y) will be zero for pixels that have not yet been processed. Also, the model's origin is at the pixel of 
interest, so the estimated value at that pixel is just C. We wish to find values for A, B, and C which minimize the error. To 
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find min e2 three equations are required where, in each, the partial derivative of e2 is taken with respect to one of the 
AJB.C 

unknowns and set equal to zero: 

0 = 

0 = 

0 = 

de2(x,y) 
dA 

dz2(x,y) 

dB 

de2(x,y) 

dC 

= 'Z'L2'w2{x + i,y+j)[Ai+Bj + C-z(x + i,y+j)} , 
j   > 

= I<I,2jw2(x + i,y+j)[Ai+Bj+C-z(x + i,y+j)] , 
j   i 

= 'Z'£2w2(x + i,y+j)lAi+Bj+C-z(x + i,y+j)] . 

(28) 

(29) 

(30) 
j   i 

Equations 28 to 30 can be expressed in a single matrix equation of the form 0 = Ax - b, yielding 

■'2,.,,2/v , ; ,, , ;\   V V ;,v,,2/v , : ,,.  :\    vr;,„2 

0 
0 
0 

IIrw2(.r + /,y+y) llijw2(x + i,y+j) Lliw2(x + i,y+j) 
j   i J   i j   i 

Zlijw2(x + i,y+j) Hj2w2(x + i,y+j) II/w2(jc + /',y+y) 
j   i J   i j   i 

II /w2(x + i,y +j) I Ijw2(x + i,y +j) II1 w2(x + i,y +j) 
j   i j   i j   i 

A 

B 

C 

Redistributing terms in Eq. 31 and multiplying both sides by the inverse of A gives 

A 
B 
C 

II/2w-(x + ;,_y+y) I,I.ijw2{x + i,y+j) I,'Liw2(x + i,y+j) 
j   i j   i j   i 

11 ijw2 (x + i,y+j) ZZj2w2{x + i,y+j) ZI.jw2(x + i,y+j) 
j   i j   i j   i 

ZI.iw2(x + i,y+j) Z~Ljw2(x + i,y+j) lL\w2(x + i,y+j) 
J   i j   i j   i 

11 iz{x + i, y +j)w2 (x + /, y +j) 
j i 

I Iy'z(x + /, y +J)w2 {x + /, y +j) 
j i 

ZI,z{x + i,y+j)w2(x + i,y+j) 
j   i 

11 iz(x + i, y +j)w\x + i, y +j) 
j   i 

I !jz(x + i, y +j)w2(x + i, y +j) 
j   i 

IIZ(JC + i,y +j)w2(x + i,y +j) 
j > 

(31) 

• (32) 

Equation 32 can be readily solved at each point (x, y) to obtain 

Iug + Ihh+Ici „ Ihg+Idh+I<,i 
;B-- and C = ■ 

Icg + Ieh+Ifi 

adf- ae1 -b2f+ 2bce -c2^       adf-ae2 - b2f+ 2bce - c2d ~"~       adf- ae2 - b2f+ 2bce - c2d 

where the x and y arguments have been omitted for clarity and the following substitutions have been made: 

(33) 

a(A-,>') = II/-M'-(.v + /,_y+y) , b(x,y) = I.Z,ijw2(x + i,y+j) 
J i j  '• 

d(x,y) = llj2w2(x + i,y+j) 
j i 

e(x, y) = I I/w2(* +;', y +j) 
j  i 

c(x, y) = 11 iw2 (x + /, y +j) , 
j   i 

f{x,y) = L'Lw2(x + i,y+j) , 
j i 

g(x,y) = l'Liz(x + i,y+j)w2(x + i,y+j) , 
j i 

h(x,y) = lljz(x + i,y+j)w2(x + i,y+j)  , 
./ ' 

i(x, y) = 11 z(x + i, y +j)w2{x + i, y +j) , 
j i 

Ia(x,y) = d{x,y)f{x,y) -e\x,y) ,     lh{x,y) = c{x,y)e(x,y) -b(x,y)f{x,y) , Ic{x,y) = b(x,y)e(x,y) -c{x,y)d{x,y) , 

Id(x,y) = a(x,y]f[x,y)-c2(x,y) ,     lc{x,y) = b(x,y)c(x,y)-a(x,y)e(x,y) and Ij{x,y) = a(x,y)d(x,y)-b2{x,y). 

When the coordinates of the pixels in the neighborhood are transformed such that the center pixel, for which the 
estimated phase value is desired, is at the origin, then the estimated phase value resulting from the facet fit is simply the value 
of C. Given the estimate C and the measured phase z(x, y), a fringe number, n, must be chosen to minimize the difference 
between the two; that is, find min{|C-[z(.t:,y) + Mr.]|} for time-average ormin{|C-[z(jc,y) + 2wr]|} for static holograms. 

3.4. Iterated fitting to achieve minimum curvature 

After the phase has been unwrapped by the sweeping wavefront, each pixel's neighborhood is more completely filled in 
than it was when the fringe number was initially assigned during the unwrapping process. To take advantage of the extra 
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information available, facets are fit at every point in the data again and any mislabeled pixels are corrected. The points are 
visited in a raster scanned order. This process is repeated until no more changes occur anywhere in the data over an entire 
scan. Once this process has converged, the state for which the curvature is minimized has been found. 

3,5« Smoothing with facets 

Due to the influence of various noise sources, the unwrapped EOH data generated by the system are generally not 
smooth. Furthermore, any pixel sites whose weight values were zero contain no data. To fill in the disregarded points and 
produce a more uniform surface, the facet fitting routine can be used once again. A new set of data is created where the value 
at each point is assigned the value of the estimate returned by the facet fitter. 

Whether to smooth the data is a philosophical problem with many ethical ramifications. In general, smoothing or 
otherwise altering data for presentation should be avoided, but, given that the data measured here correspond to continuous 
displacements of nearly rigid surfaces, were it not for the noise, the measurements would undoubtedly give smooth results. 
Therefore, facet based smoothing is provided as an option in the software. In using planar facets to perform the fitting, we 
assume that the size of the features in the data are large compared to the size of the facets. Were we to employ quadratic 
facet fitting for the smoothing step, this assumption would be relaxed, but the sensitivity to noise would also be increased. 
Future versions of the algorithm may include quadratic fitting for the smoothing as an option. 

4. RESULTS 

This section contains examples which show the capabilities of the new phase unwrapping technique as applied to image 
data generated by an EOH system. The automatic boundary detection which results from the use of the weighting function is 
demonstrated in Fig. 3. To show the fringe densities that the system can correctly analyze, a bending example processed with 
the static mode algorithm in the EOH system is shown in Fig. 4. Figures 5 and 6 show time-average results highlighting the 
unwrapper's ability to follow compound curves in the data. 

4.1. Static mode examples 

Figures 3 and 4 show examples of phase unwrapping applied to static mode EOH data. 

(a) (b) (c) (d) 

Fig. 3. Wine goblet statically loaded with a weight placed across the top of the glass. Image (a) shows the 
display mode hologram. Images (b) and (c) show the sinusoidal and cosinusoidai data mode fringe 

patterns, respectively. Image (d) shows the fringe numbers assigned over the area processed, and illustrates 
the automatic boundary detection that results from the use of the weighting function. 

The weighting function provides a means of automatically locating exterior boundaries of objects in the image. Since 
the weights are computed from the modulation magnitude at all points in the image, and the modulation magnitude is very 
small anywhere that the object beam does not diffusely reflect from the surface of the object of interest, the weights outside 
the object are generally zero. As the unwrapping approaches an object boundary, all the zero weighted points outside the 
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object are ignored. As a result, processing naturally slops at object boundaries. The example in Fig. 3 shows the effect of 
this automatic boundary detection. 

Facet based phase unwrapping has proven to be reliable and effective. In a static mode hologram of a bending beam, 
the unwrapper successfully processed 40 fringes across 288 pixels. This implies that fringes spaced only 7 pixels apart can be 
interpreted correctly. Figures 4a to 4d show the image data at various stages during the process of deriving the displacement 
data and Figs 4e to 4g show the displacement data. 

(a) 

"**"•"■"" ■""^T^.*. 

'_ ■■   ■- 

ii    '"" ,n iigrn 

(b) (c) 

W9*ilJiuM j.i|§i|ytg 

(d) 

(e) (g) 

Fig. 4. - Static bending of a 101.6 mm x 50.8 mm x 3.175 mm aluminum plate. The plate was fixed at the 
bottom and a force was applied from the back of the plate approximately in its middle and pointing toward 
the camera. The static display mode hologram is shown in (a) while the sinusoidal and cosinusoidal data 
mode holograms are shown in (b) and (c). The wrapped phase computed from (b) and (c) is shown in (d). 
In these images, there are 40 fringes across the 288 pixel height of the plate, (e) fo (g) show renderings of 

the unwrapped data. The wireframe plot in (e) shows the data converted to metric coordinates and (f) 
shows a zoomed portion of the upper right corner of the data rendered in (e). The small scale random 
variations visible in (f) are caused by the various sources of noise in the system. The image in (g) is a 

shaded 3-D rendering of the displacement data mapped onto a rectangular plate. 
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4.2 Time-average mode examples 

Examples of time-average mode operation are given in Figs 5 and 6. Time-average mode allows real-time observation 
of fringe patterns indicative of the displacement of the object's surface in resonant vibration modes, as well as the capture of 
data for processing. As an operator scans through a range of excitation frequencies driving the part under observation, fringe 
patterns appear and disappear as the driving frequency passes through the part's resonances. The operator can capture image 
data for quantitative analysis after a resonant mode has been found by this reai-time observation. 

(a) (b) 

vMm&mr.t 

(c) 

Fig. 5. Time-average EOH of a plate vibrating 
in a resonant mode at 6,540 Hz. (a) to (c) images of 

the negative, zero, and positive biased holograms 
used to compute the uncorrected phase, (d) image 

of the wrapped, uncorrected phase, (e) the 
displacement values pioted on a wireframe grid 

after facet based smoothing has been applied, and 
(fj a 3-D shaded rendering of the same data mapped 

to a rectangular plate. In the shaded image, the 
primary light source is below and slightly in front of 

the plate. 

(e) (f) 

Notice that the surface displacements computed from the phase data undergo rapid changes in slope, especially in Fig. 6. 
Even in the presence of such high curvature, the planar facet based unwrapper can make a good iocai estimate of the expected 
phase at the next pixel. These images were unwrapped and smoothed with a 9x9 pixel facet which corresponds to roughly ^ 

1 x 1 millimeter in real coordinates. Since this size is small compared to the curving features of the surface, the unwrapper is 
able to follow the surface faithfully and little distortion is introduced in the smoothed output. 

For all the examples, the first stage of processing - the actual unwrapping - required from 1.5 to 2.5 minutes. The 
energy minimization iterations make relatively small changes to the overall results but require the most time to complete. For 
these images. 2 or 3 passes were required taking from 6 to 10 minutes. This step can be skipped with minimal impact on the 
results. Finally, the smoothing step required from 2 to 3 minutes to process and save the data. 
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Fig. 6. Time-average EOH of a plate 
vibrating in a resonant mode at 34,06! Hz. Image 
(a) shows the display mode hologram as seen on 
the image processor screen. The displacements 

computed from the smoothed phase are displayed 
in (fa). Images (c) to (g) show one half of a cycle 
of the vibration sampled at five positions during 

the motion. 

(a) (b) 

:    " 

mm' 

-■fii- 

(O (0 

5. CONCLUSIONS AND RECOMMENDATIONS 

The results presented in this paper show that the planar facet estimator technique for curvature minimization on wrapped 
fringe data gives highly reliable unwrapping for continuous surfaces. Experimental results demonstrate that curvature 
minimization by facet based estimation provides a valuable framework for future development of a more complete system to 
unwrap phase in the presence of discontinuities in the data. 

The facet technique requires no prior smoothing of the speckle pattern in the original data to perform the unwrapping. 
This constitutes a great benefit compared to many of its precursors. Since the speckle pattern is largely uncorreiated, 
smoothing has the disadvantages of reducing spatial accuracy and diluting good data with data dominated by noise.   In 
contrast, the technique describee in this paper assigns the best fringe number to each data value, then gives the user an option 
to perform smoothing afterward. The user has the opportunity to study the actual data to determine whether the smoothing is 
justifiable. 

A number of enhancements couid be made to improve the present algorithm in the future. These include: 1) improve 
the speed with an array processor, 2) add facilities for interactive delineation of boundaries and especially discontinuities in 
the surfaces in the field of view, 3} use the facet fitting error measurement at each point to locate internal discontinuities 
automatically, and 4} use a quadratic rather than planar mode; for smoothing the data. 
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ABSTRACT 

This paper presents fundamentals of the Electro-Optic Holography and reviews basic principles and 

procedures of the Finite Element Method with special emphasis on quantitative analysis of vibrating objects. 

The quantitative results are illustrated by representative examples of a vibrating cantilever plate. Comparison 

of the results obtained using the Electro-Optic Holography and the results produced by the Finite Element 

Method shows good correlation. 

1. INTRODUCTION 

The subject of vibrations has a unique fascination. It is a subject explainable by basic principles of 

mechanics. It is also a subject whose mathematical concepts are all associated with physical phenomena 

which can be observed experimentally and measured. As such, vibration problems have been subjected to a 

number of solution methodologies. These methodologies can, in general, be classified as Analytical, Compu- 

tational, and Experimental Solutions, and constitute, what may be called, ACES approach to vibration prob- 

lems, or, in fact, any type of problems which can be solved either by analytical, or computational, or 

experimental method, or a combination of these methods1. Certainly, each methodology has considerable 

advantage over the others, for a given class of problems, and each makes the use of the others for verification 

of the results. In many cases, the data furnished by one methodology has been utilized by the other method- 

ologies to make the solutions possible. 

Analytical methods are characterized by exact closed form solutions and make use of infinitesimal ele- 

ments. Computational methods employ finite size of elements in discretization of the physical domain and 

provide approximate solutions. Because of increased availability and capability of the number crunching 

E-2 



equipment, in recent years, formulation of problems has shifted from exact to approximate. Experimental 

methods are the ultimate tests of all analytical and computational solutions. They employ actual objects that, 

in general, are subjected to actual operating conditions to measure their response to the applied loads. 

Study of vibrations of a cantilever plate constitutes a classical problem in the field of vibration analysis2. 

It has many applications and acts as a limiting case for more complicated problems, such as, for example, 

vibrations of turbine blades, aircraft wings, fins of compact heat exchangers in forced convection, or vibra- 

tions induced by a flow of fluids used to cool avionics. In these applications, the designer must be concerned 

with the possibility that large cyclic displacements and stresses may be induced by periodic, or random, time 

varying loads acting on "plates." Analysis of vibrations of the plates, subjected to such loads, are of primary 

interest in many design problems. 

Today, these design problems are, to a great extent, solved by application of the computational meth- 

ods, particularly the Finite Element Method3 (FEM). As is often the case with new and powerful methods, 

FEM have been overused, perhaps even misused4. Only recently have we begun to realize that virtually all 

versions of FEM contain some shortcomings. As a result, the need for unifying (merging, coupling) FEM in 

the physical and time domains with other methods has begun to manifest itself4-6. What is of particular inter- 

est, in this paper, is the unification of FEM with laser methods4, especially those relating to studies of vibra- 

tions. 

Out of a number of laser methods available today, the most widely used for study of vibrations is the 

method of Time-Average Hologram Interferometry7-8 (TAHI), particularly as it is implemented via Electro-Optic 
Holography2,9-11 (EOH). 

In the following sections, fundamentals of FEM are presented and basic principles and procedures of 

TAHI as implemented via EOH are reviewed, with special emphasis on quantitative analysis of vibrating 

objects. Discussion of this analysis is illustrated by representative examples of a vibrating cantilever plate. 

2. FINITE ELEMENT METHOD 

The Finite Element Method12"17 (FEM) is a computational analysis technique for obtaining approximate 

solutions to a wide variety of engineering problems. In a continuum problem of any dimension the field vari- 

ables, such as displacement, stress, temperature, etc., possess infinitely many values because they are func- 

tions of each generic point in the body, or solution region. Consequently, the problem is one with an infinite 

number of unknowns. The finite element discretization procedures reduce the problem to one of a finite 

number of unknowns by dividing the solution into elements and by expressing the unknown field variables in 

terms of assumed approximate functions within each element. The approximate functions (sometimes called 

interpolation functions) are defined in terms of the values of the field variables at specified points called nodes 

or nodal points. Nodes usually lie on the element boundaries where adjacent elements are considered to be 

connected. In addition to boundary nodes, an element may also have a number of internal nodes. The nodal 

values of the field variables and the interpolation functions for the elements completely define the behavior of 

the field variables within the elements. For the finite element representation of a problem the nodal values of 

the field variables become the unknowns. Once these unknowns are found, the interpolation functions define 

the field variables throughout the assemblage of elements. 
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Clearly, the nature of the solution and the degree of approximation depend not only on the size and 

number of the elements used, but also on the interpolation functions selected. As one would expect, we can- 

not choose functions arbitrarily, because certain compatibility conditions must be satisfied. Often functions 

are chosen so that the field variables, or their derivatives, are continuous across adjoining element 

boundaries. 

An important feature of FEM that sets it apart from other computational methods is its ability to formulate 

solutions for individual elements before putting them together to represent the entire problem. This means 

that if we are treating a problem in stress analysis, we can find the force-displacement or stiffness characteris- 

tics of each individual element and then assemble the elements to find stiffness of the whole structure. In 

essence, the problem reduces to considering a series of greatly simplified problems. 

Another advantage of FEM is the variety of ways in which one can formulate the properties of individual 

elements. There are basically four different approaches: 1) direct approach, 2) variational approach, 3) 

weighted residuals approach, and 4) energy balance approach. Regardless of the approach used to find the 

element properties, the solution of a continuum problem by FEM always follows an orderly step-by-step pro- 

cess. 

The fundamental FEM process consists of six steps: 

1. Discretize the continuum. Finite element analysis is commenced with the division of the continuum, 

or solution region, into elements. 

2. Select interpolation functions. Following discretization, nodes are assigned to each element and the 

type of interpolation function, to represent the variation of the field variables over the elements, is 
chosen. The magnitude of the field variables as well as the magnitude of their derivatives may be 

unknowns at the nodes. 

3. Find the element properties. Once the finite element model has been established, we are ready to 

determine the matrix equations expressing the properties of the individual elements. 

4. Assemble the element properties to obtain the system equations. To find the properties of the overall 

system modeled by the network of elements we must "assemble" all of the element properties. That 

is, we must combine the matrix equations expressing the behavior of the entire solution region or 

system. The basis for the assembly procedure stems from the fact that at a node, where elements 

are interconnected, the value of the variable is the same for each element sharing that node. During 

this step, the system of equations must also be modified to account for the boundary conditions of 

the problem. 

5. Solve the system equations. The assembly process of Step 5 gives a set of simultaneous equations 

that we can solve to obtain the unknown nodal values of the field variables. 

6. Make additional computations, if desired. 

At the end of Step 5 or Step 6, field variables are known and constitute approximate solution to the 

problem. However, the most important issue of the resulting FEM solution, or, in general, of any approximate 

solution in engineering, is the accuracy of the results4-6'18. How good are they? What are the bounds of 
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errors? Such questions have often been asked though answers have not always been found. The easiest 

response to these questions has always been the use of a factor of safety (FS) big enough to accommodate 

all uncertainties. How big should the FS be has, of course, been another question. 

In recent years, the availability of computational tools, both in respect to methodology and equipment, 

has enabled engineers to design very complicated systems by successfully solving difficult problems. Never- 

theless, one question raised above still remains: How good are the results? 

While examining FEM, it can be noticed that error sources are quite numerous. Basically these sources 

can be categorized as those related to discretization, mathematical modeling, and manipulation. In addition, 

each of these has many subdivisions of error sources. Understanding of the error sources and their subse- 

quent control is one of the most challenging tasks in the field of computational methodology, today. One way 

to approach this task is by unification of FEM with experimental methods. 

Unification of FEM with Time-Average Hologram Interferometry, as applied to the study of vibrations of a 

cantilever plate, is considered in Sections 3 to 5. 

3. TIME-AVERAGE HOLOGRAM INTERFEROMETRY 

3.1. Recording and reconstruction of time-average holograms 

Time-Average Hologram Interferometry (TAHI) is characterized by recording a hologram of an object, 

undergoing a cyclic vibration, with exposure time long in comparison to one period of the vibration 

cycle7'8'19_21. In this way, the hologram effectively records an ensemble of images corresponding to the 

time-average of all positions of the vibrating object.   In classical implementation of TAHI, the two-beam off- 

axis setup, shown in Fig. 1, is used. During reconstruction of such a hologram, interference occurs between 

the entire ensemble of images, with the images recorded near zero velocity (i. e., maximum displacement) 

contributing most strongly to the reconstruction. As a result, the image of the object, seen during reconstruc- 

tion of a time-average hologram, is overlaid with interference fringes of unequal brightness, as discussed in 

Section 3.2. 

3.2. Interpretation of time-average holograms 

Time varying displacement, L, (x, y, z, 0, of a vibrating object can be related to temporal changes in 

the fringe-locus function, fi,(x,y.z,0> constant values of which define fringe loci on the object's surface. 

Using the holographic setup shown in Fig. 1, this relationship can be written as7-8 

fi((x,y,z,0=K(x,y,z)-Lt(x,y,z,0> (1) 

where l< (x, y, z) is the sensitivity vector defined as the difference between the illumination and observation 

vectors, K , ( x, y, z) and K 2 (x, y, z), respectively, that is, 

K(x,y,z) = K2(x,y,z)-K,(x,y,z). (2) 

In Eqs 1 and 2, x, y, and z represent rectangular Cartesian coordinates characterizing the holographic 

system, and t represents time. 
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VIBRATING 
CANTILEVER 

PLATE' 

LASER 

PS1 

Fig. 1. A two-beam off-axis setup for recording and reconstruction of time-average holo- 

grams: BS is the beamsplitter, M1 and M2 are fixed mirrors, PS1 and PS2 are phase 

stepper controlled mirrors, SE1 and SE2 are spatial filter beam expander assemblies, 

BR is the beam rotator, and SI is the speckle interferometer. The direction of illumina- 

tion, during recording of a hologram, is defined by vector K ,, while the direction of 

observation is defined by vector K 2 . 

The time varying light field, F,(x,y,z,t), propagating from the vibrating object, along the direction 

specified by the vector K 2, shown in Fig. 1, can be represented by 

F((x',y,z,0= ^0(x,y,2)exp[i(p0(x,y,z)+iD((x,y,2,0]. (3) 

where A 0 and cp 0 are the amplitude and the phase, respectively, of the light field propagating away from the 

vibrating object, and D, is the fringe-locus function defined by Eq. 1. 

The complex reference field, FrO, y, z), needed to record a hologram, can be represented by 

Fr(x,y,z)= ^r(x,y,z)exp[i((ir(x,y,z)], (4) 

where A r and cpr are the amplitude and the phase of the reference beam, respectively. 
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When the light fields defined by Eqs 3 and 4 are brought to interfere with each other in the plane where 

a hologram is to be recorded, the resulting complex light field in the hologram recording plane, 

F„(x,y,z,0, is 

Fh(x,y,z,0 = ^<,(x,y,z)exp[i(p0(x,y,z) + in((x,y,z,0] 

+ .4r(x,y,z)exp[i(pr(x,y,z)]. (5) 

The "medium," in which a hologram is recorded, responds to the time-varying intensity, I h(x ,y ,z,t~), 

of the field given by Eq. 5. The value of this time-varying intensity is expressed as a product of 

Fh(x, y, z, t) with its conjugate F'h(x ,y, z,t), that is, 

I h{x ,y ,z,t)-F h{x ,y ,z,t)F'h{x ,y ,z,t) 

= {A0(x,y,z)exp[i<f0(x,y,z) + iüt(x,y,z,t)] 

+ /lr(x,y,z)exp[i(pr(x,y,z)]}{,4,,(x,y,z)exp[-iq>0(x,y,z) 

- int(x,y,z,t)] + Ar(x,y, z)exp[-iq>rO, y, z)]> 

= ylf(x,y,z)+^r
2(x,y,z) 

+ FrO,y,z)F,*O,y,z,0 + F*(x,y,z)F(O,y,z,0- (6) 

The image recorded in the medium is the time-average of I h(x ,y ,z,t) over the exposure time T and can 

be expressed as 

1     r 2 2 -J    Ih(x,y,z,t)dt = A0(x,y,z) + Ar(x,y,z) 

1   fT   • + FrO,y,z)-       Ft(x,y,z,Qdt 
I Jo 

+ F;(x,y,z)^ f   F,(x, y, z, OcÜ . (7) 
I Jo 

When the time-average hologram is developed and illuminated by the original reference field specified 

by Eq. 4, the result is: 
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Fr(x,y,z)- I    Ih(x,y,z,f)dt = Az
0(x, y, z)Fr(x, y, z) + Az

r(x, y, z)Fr(x, y, z) 
/Jo 

1   fT    . 
+ y!,(x,y,z)exp[2ic()r(x,y,z)]-      F,(x,y,z,OcÜ 

i Jo 

^ Az
r(x,y, z^ f  Ft(x,y, z,t)dt. (8) 

The first two terms on the right side of Eq. 8 represent an attenuated undiffracted reconstruction field, the third 

term gives rise to the conjugate image, while the fourth term is proportional to the time-average of the original 

field, propagating from the vibrating object, and describes formation of the virtual image. This proportionality 

constant is the square of the amplitude of the reference field. Therefore, the developed hologram, when illu- 

minated by Fr(x, y, z), produces the object wave which has the complex amplitude proportional to the 

time-average of F, (x, y, z, 0 over the time interval T. The time-average of F, (x, y, z, O can be 

represented as 

l f \ rT 

-       Ft(x,y,z,t)dt = -      A0(x,y,z')exp[iq0(x,y,z) + in.t(x,y,z,t)]dt 
1   J 0 I   J 0 

= F0(x,y,z)^f   exp[i£lt(x,y,z,0]dt, (9) 
I J o 

where F0(x, y, z) represents light field propagating from a stationary object8. 

The time-average integral appearing in Eq. 9 is called the characteristic function^ and is denoted by 

M (x, y, z, t), that is, 

1   fT 

-       exp[;n,(x,y, z,t)]dt = M(x,y,z,t). (10) 
1 Jo 

The integral of Eq. 10 may be evaluated as J 0 [ fi, (x, y, z, 0 ], the zero-order Bessel function of the first 

kind of the argument D,(x ,y, z J). Therefore, according to Eqs 9 and 10, the reconstructed complex 

amplitude responsible for formation of the virtual image is proportional to [F0(x,y,z)][M(x,y,z,OL 

while the corresponding intensity, 7,m(x, y, z), of the reconstructed image is 

/,.m(x>y,z) = [F0(x,y,z)]2[M(x,y,z,0]2 = ^0
2(x,y,z)J^[n((x,y,z,0], 

or 
/,m = /l2J2(Di), (11) 

where the arguments (x ,y, z) and (x, y, z, t) were omitted for simplification. 

Equation 11 shows that the virtual image obtained during reconstruction of the time-average hologram is 

modulated by a system of fringes of unequal brightness described by the square of the zero-order Bessel 

function of the first kind. Thus, for nontrivial values of A 0, centers of the dark fringes will be located at those 

points on the object's surface where J0(D,) equals zero. 
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In the case of out-of-plane (transverse) vibration of the object, i. e., when motion of the object is in the 

direction parallel to the z-axis, Fig. 1, the vibration amplitude L,z can be shown to be8 

L.  = . X |ft,|. (12) 

In Eq. 12, L,x is the z-component of the displacement vector L,, X is the wavelength of the laser light used 

to record and reconstruct the holograms, K l z and K 2 z are the components of the illumination and the 

observation unit vectors defining directions of K , and K 2 , respectively, and | ft, | is the magnitude of the 

fringe-locus function. 

In order to evaluate Eq. 12, the wavelength of the laser light used must be known, the illumination and 

the observation geometry must be known in terms of the components of the unit illumination and observation 

vectors, and the spatial distribution of the fringe-locus function must also be known. 

The wavelength of the laser light is known from the manufacturer specifications. The illumination and 

the observation vectors are computed based on measurements of x, y, and z coordinates of the position 

vectors specifying locations of the point source of illumination, the point(s) of interest on the object, and the 

point along the optical axis of the viewing system. Finally, the spatial distribution of ft, is determined directly 

from the holograms and, for the case of TAHI by means of the Electro-Optic Holography, this determination is 

the subject of Section 4. 

4. ELECTRO-OPTIC HOLOGRAPHY 

In the Electro-Optic Holography (EOH) irradiances produced by mutual interference of the object and 

the reference fields are recorded electronically by a CCD camera^."!0  Processing of this interferometric infor- 

mation and display of the experimental results are carried out concomitantly with measurements of irradiation. 

In order to achieve this, the EOH method relies on electronic acquisition, processing, and display of optical 

interference information, and allows automated processing of fringes of objects subjected to static and 
dynamic loads23. 

This paper concentrates on quantitative analysis of electronic holograms of objects subjected to the 

dynamic loads. That is, in the following sections, principles of EOH are outlined and its implementation to 

study of vibrations is presented. In order to facilitate development of the governing equations, this presenta- 

tion considers time-average recording of sinusoidally vibrating objects. 

4.1. Quantitative analysis of electro-optic holograms 

In EOH, the holographic process is carried out by recording sequential frames of images of an object as 

it vibrates. Typically, four sequential frames are recorded, with a finite phase step, imposed on the reference 

beam, between each frame. For the case of a sinusoidally vibrating object, the irradiance distribution for the 

n - */i sequential frame, /, „ (x, y), at the detector array of a CCD camera in the EOH system can be repre- 

sented by10-23 
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/(„(*.y)= Io(x,y)+ I r{x,y) 

+ 2^0(x,y)^r(^.y)cos[A(p(x,y) + AejM[n,(x,y,0]- (13) 

In Eq. 13, xand y identify coordinates of the detectors in the array, t indicates time, / 0 and / r denote irra- 

diances of the object and reference fields, whose amplitudes are AB and Ar, respectively, Acp is the phase 

difference between the two fields, A8n is the n- th finite phase step, M is the characteristic fringe 

function22 that modulates the interference of the two fields due to the object's motion, and £lt is the time 

dependent fringe-locus function defining fringe loci on the surface of a vibrating object. 

Following procedure used in References 10 and 23, it can be shown that 

(/tl-/(3)
2 + (/(2-/u)2= 16 A2

0A
2

rM\n,)= 16AUUZo(nt), (14) 

where it is seen that the characteristic function, for sinusoidally vibrating object, is equal to the zero-order 

Bessel function of the first kind. 

Quantitative interpretation of electronically recorded holograms of vibrating objects depends on determi- 

nation of n, from Eq. 14. This determination can be done by optical shifting of the J0 fringes. The shifting 

of the J 0 fringes is achieved by modulating the phase of either the object or the reference beams 

sinusoidally at the same frequency and phase as the object vibration. Such a process can be represented 

mathematically by addition of a phasor bias, B, to the argument of the Bessel function. If the phase of the 

sinusoidal beam modulation is adjusted to coincide with that of the object vibration, the phasor bias becomes 

a simple additive term within the argument of the Bessel function and Eq. 14 can be represented as10 

(/(I-/,3)
2 + (/(2-/(4)

2= 16A2
0AUZo(nt-B), (15) 

where B is the magnitude of the bias modulation imposed on the object beam while recording electronic 

holograms. In this approach, the nearly periodic nature of the J2(n, - ß) function is modelled as 

cos2(fi - B) function, where fl represents the fringe-locus function describing the cosinusoidal fringes 

observed during reconstruction of a double-exposure hologram, and is utilized to obtain an approximate solu- 

tion for D,, based on three irradiance distributions of the type given by Eq. 15, corresponding to the zero-, 

the positive-, and the negative-shifts, respectively. This approximate solution, n,Qpprox, that is, 

fi, =-taiT' lapprox       O 

1 -cos(2£) 
sin(25) 

J2(n, + ß)-J2(I5,-ß) 
(16) 

2J2(n,)-J2(fi(-ß)-J2(D( + 5) 

differs from the correct argument D, of the JD function because of inequality between the J2 and the cos2 

functions, and should be expressed as 

D, =£!. + £, (17) lapprox < ^ J 

where e is the error representing this difference. This error is computed for any value of D.,, for specific 

values of B, to create a lookup table. The lookup table is used to correct the values of fl,Qpprox computed 

from Eq. 16. Once the correct values of fi, are determined, they can be used to compute object displace- 

ments using, e. g., Eq. 12. 
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The interferometric information necessary to solve Eq. 16 is recorded electronically, by the EOH system, 

at the rate of 30 frames per second. The system processes this information in a pipeline fashion. This pro- 

cessing yields the results at up to 512x480 points per frame. 

4.2. Description of the EOH system 

The EOH system is shown in Fig. 1. In this system, the laser output is divided into two beams by means 

of a continuously variable beamsplitter, BS. 

One of these beams is directed by a fixed mirror, M1, and a phase stepper controlled (i. e., moveable) 

mirror, PS1, and is shaped by the spatial filter beam expander assembly, SE1, to illuminate the object uni- 

formly; PS1 can be driven at the same frequencies as the object excitation to provide bias modulation neces- 

sary for quantitative interpretation of holograms of vibrating objects, as discussed in Section 4.1. The beam 

rotator, BR, located between PS1 and the object, is used to rotate object illumination to facilitate speckle 

averaging. The direction of object illumination is characterized by the vector K ,, while the object observation 

direction is defined by the vector K 2. 

The other beam, steered by M2 and PS2 and spatially filtered and expanded by SE2, is directed toward 

the reference input of the speckle interferometer, SI. In this arrangement, PS2 introduces 90° phase steps 

between consecutive frames. 

The speckle interferometer combines the object beam with the reference beam and directs them colli- 

nearly toward the detector array of the CCD camera. The camera detects the interference pattern and sends 

it to the pipeline processor. The sequential frames are processed to determine quantitative information on the 

object's displacements and/or deformations. All computations are done in a pipeline processor which oper- 

ates under control of a host computer. The host computer also controls excitation of the object, coordinates 

it with the bias modulation imposed on the object beam, and keeps track of the 90° phase steps between 

the frames. 

By operating on each input image and its three predecessors, the pipeline processor produces a holo- 

gram, and this hologram is viewed concomitantly on the TV monitor. Such holograms are produced for the 

zero, as well as the positive and the negative bias modulations, for each resonance condition of the object. 

The resulting three electronic holograms are then processed, by the host computer, to determine spatial dis- 

tribution of D,, which, in turn, leads to computation of the displacement vectors. 

5.  REPRESENTATIVE RESULTS AND DISCUSSION 

Representative results of FEM and EOH study of a vibrating cantilever plate are shown in Figs 2 and 3. 

The interferograms shown in these figures were produced using the EOH system and were photo- 

graphed directly from the displays on the TV monitor. It should be noted that in the current version of the 

EOH system, 245,760 pixels can be addressed per each frame10. However, because of the cantilever plate's 

aspect ratio, only approximately 100,000 pixels were used for interpretation of images produced by EOH. In 

addition, to facilitate display of experimental and computational results, only a very small fraction of points 

(672/100000=0.00672), out of the total of 100,000 points on the cantilever plate, were selected. 
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Fig. 2. Cantilever plate: (a) image of the plate and the fringe pattern produced by the EOH 
system during the time-average recording of the plate vibrating at 1082 Hz, without the bias 
modulation, (b) wire frame representation of the plate's displacements determined by EOH, 

(c) wire frame representation of the plate's displacements computed by FEM. 
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Fig. 3. Cantitever plate; (a) image of the plate and the fringe pattern produced by the EOH 
system during the time-average recording of the plate vibrating at 3148 Hz, without the bias 
modulation, (b) wire frame representation of the plate's displacements determined by EOH, 

(c) wire frame representation of the plate's displacements computed by FEM. 
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The FEM results shown in these figures were produced by subdividing the cantilever plate into 621 ele- 

ments defining 672 nodes, each of which, except for the nodes at the fixed end of the cantilever plate, had 

six-degrees-of-freedom. Therefore, the FEM problem was characterized by solution of a system of 3888 

simultaneous equations. It should be noted that the number of nodes at which displacements were com- 

puted by FEM was the same as the number of points at which displacements determined by EOH were dis- 

played. It should be also noted that the nodal coordinates used by FEM were the same as the coordinates of 

the points at which the EOH results were displayed. 

Figure 2a shows the image of the cantilever plate and the fringe pattern produced by the EOH system 

during the time-average recording of the plate vibrating at an experimentally determined resonance frequency 

of 1082 Hz, without the bias modulation of the object beam. Based on the irradiance values measured from 

Fig. 2a, corresponding the time-average hologram recorded without the bias modulation, and its two compan- 

ion images, corresponding to the positive and the negative bias modulations, displacements were determined 

as a function of x and y coordinates of the vibrating cantilever plate. Figure 2b shows these displacements 

in wire frame representation. Figure 2c shows the wire frame representation of the FEM computed displace- 

ments for the same mode shape as that shown in Figs 2a and 2b. It should be noted that the FEM computed 

resonance frequency was 1066 Hz. Comparing Figs 2b and 2c it is apparent that the displacements 

computed by FEM compared well with those measured directly from the EOH images. 

Figure 3 shows the EOH and the FEM results for the same cantilever plate, but vibrating at a higher res- 

onant frequency than that shown in Fig. 2. Experimentally measured frequency was 3148 Hz while that com- 

puted was 3281 Hz. Again, comparison of the experimentally and the computationally determined 

displacements shows good correlation. 

6. CONCLUSIONS 

In this paper, fundamentals of FEM were presented and principles and procedures of EOH were 

reviewed with special emphasis on quantitative analysis of vibrating objects. The quantitative results were 

illustrated by representative examples of a cantilever plate vibrating at the specific resonance frequencies. 

Using EOH, the results are obtained in an automated manner. The interferometric information is 

recorded electronically at the rate of 30 frames per second, it is processed in a pipeline fashion, and pro- 

duces results which have very high spatial density - currently at up to 512x480, or approximately quarter of a 

million, points per frame. In this specific study, because of the cantilever plate's aspect ratio, only 

approximately 100,000 points were used for interpretation of images produced by EOH. Out of these points, 

only 672 were used to represent displacements of the vibrating cantilever plate, in order to facilitate display of 

the experimental results and for their comparison with the computational results. Furthermore, it should also 

be noted that EOH is not only capable of operating on vibration interference patterns, but it is also capable to 

operate on static interference patterns. 

The representative results show that the EOH system provides an effective way for recording the time- 

average holograms of the vibrating objects. As these holograms are being recorded electronically, they can 

be either viewed directly on the TV monitor or they can be analyzed to obtain quantitative results on the 
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object's displacements as a function of position on its surface. For the cases presented herein, vibration 

amplitudes were below 700 nm at experimentally determined plate frequencies up to 3148 Hz. The FEM pre- 

dictions of the cantilever plate's vibration characteristics correlated well with the EOH results. 

The ongoing work in combining methods of hologram interferometry with the finite element methods will 

lead to a development of new design procedures. Such hybrid procedures, possessing both experimental 

and computational capabilities will, in turn, lead to the next generation of tools that will enhance design and 

optimization of critical components and structures. 
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ABSTRACT 
Mechanical vibrations of electronic components are of 

particular interest in electronic packaging because they may lead 
to a failure and, therefore, may adversely affect durability of the 
dynamically loaded components. In this paper, computational 
and experimental methodologies are used to quantitatively study 
the dynamic behavior of the electronic components. The 
computational methodology is based on the finite element 
method. The experimental methodology is based on the 
electro-optic holography method. This method allows direct 
electro-optic recording, processing, and display of the laser 
holograms at the rate of 30 holograms per second, making it 
capable of producing quantitative data in nearly real-time. Using 
the electro-optic holography, displacement magnitudes in the 
submicron range are measured noninvasively over the full field of 
view, as a function of the resonance frequencies. Although some 
of the experimentally observed mode shapes were not predicted 
using the computational model employed in this study, the 
correlation between the finite element and the electro-optic 
holography methods was otherwise good and the resonance 
frequencies agreed to within 2%. 

1. INTRODUCTION 
One of the major challenges in the development of the 

electronic components, particularly those for avionic applications, 
is the requirement to assure their reliable functionality while 
subjected to the actual operating conditions which are static and 
dynamic in nature. Of particular interest, to the developments 
presented in this paper, are the dynamic loading conditions. 
Because the electronic components have certain mass and 
elasticity, they respond to the loads encountered during operation 
with a specific vibration behavior. Therefore, development of 
reliable electronic packages depends upon our ability to determine 
the dynamic characteristics which define and control their 
vibration  behavior, particularly  as  it  relates  to the dynamic 

environment within an aircraft which is a major contributor to the 
failure of airborne avionic systems. Soovere at al. (1987) 
estimates that 20% of experienced field failures can be attributed 
to the damaging influence of vibrations of the vehicle. 

As a result of concern over the influence of vibrations on the 
durability of the electronic components, a number of 
computational and experimental approaches have been developed 
to assess the impact of vibrations on the durability of the specific 
designs. This concern is not new and was recognized some 
half-a-century ago by Midndlin (1945) and was later continued by 
Flaherty (1971), among others. 

The computational approaches primarily rely on the finite 
element methods (FEM) as the means to assess the durability of 
the electronic components in the early stages of their design. 
Fundamentals of the FEM have been discussed in great detail 
elsewhere (e. g., Bathe, 1982; Kardestuncer, 1987; Weaver and 
Johnson, 1987; Hughes, 1987; Zienkiewicz and Taylor, 1989, 
1991) and the reader is referred to the appropriate publications. 
However, for the FEM to be effective, in addition to other input 
parameters, a piori knowledge of the mechanical properties of the 
materials used in the construction of the avionics is required for 
the size of the structures employed in the design (Pryputniewicz, 
1994a). In many cases, these properties are neither available nor 
well defined (Burkhard and Leak, 1992), which is mainly because 
the traditional measurement techniques cannot be applied to 
structures on the scale of those used in the construction of the 
modern electronic components without inherently affecting the 
outcome. One way to circumvent this difficulty is to employ 
recent developments in laser holographic interferometry methods 
which allow noninvasive measurements of the quantities of 
interest. 

Out of a number of the laser methods available today, the most 
suitable method for the study of vibrations of the electronic 
components is the method of time-average hologram 
interferometry (TAHI) (Pryputniewicz, 1985a, 1987), particularly 
as it is implemented via electro-optic holography (EOH) (Stetson 
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and   Brohinsky,   1988;   Pryputniewicz   and   Stetson,   1989; 
Ellingsrud and L0kberg, 1989; Pryputniewicz, 1991a). 

In the following sections, fundamentals of the TAHI as 
implemented via EOH are presented, with special emphasis on the 
quantitative analysis of the vibrating objects. Discussion of this 
analysis is illustrated by a representative example from a study of 
dynamics of the electronic components. 

2. TIME-AVERAGE HOLOGRAM INTERFEROMETRY 
Time-average hologram interferometry is characterized by a 

single holographic recording of an object undergoing a cyclic 
vibration. With the continuous exposure time long in comparison 
to one period of the vibration, the hologram effectively records an 
ensemble of images corresponding to the time-average of all 
positions on the vibrating object (Vest, 1979; Pryputniewicz, 
1985a, 1987). In a classical implementation of TAHI, the two 
beam off-axis setup, shown in Fig. 1, is used to record and 
reconstruct the time-average holograms. During reconstruction of 
such holograms, the interference occurs between the entire 
ensemble of images, with the images recorded near zero velocity, 
i. e., the maximum displacement, contributing most strongly to the 
reconstruction. As a result, the image of the object, seen during 
reconstruction of the time-average hologram, is overlaid with 
interference fringes of unequal brightness. In fact, these fringes 
vary according to the square of the zero-order Bessel function of 
the first kind, as discussed later in this section. 

LASER 

PSK|K 

Fig. 1. Opto-mechanical configuration of the EOH 
system: BS is the beamsplitter, Ml and M2 are the 

mirrors, PS1 and PS2 are the phase steppers, SEI and 
SE2 are the spatial filter beam expander assemblies, BR 

is the object beam rotator, SI is the speckle 
interferometer, and K, and K2 are the directions of 

object illumination and observation. 

Time varying displacement, L,{x,y,z,t), of a vibrating object 
can be related to temporal changes in the fringe-locus function, 
Q,(x,y,z,t), constant values of which define fringe loci on the 
surface of the object. Using the holographic setup shown in Fig. 
1, it has been shown by Pryputniewicz (1985a, 1987) that this 
relationship can be written as 

Cl<(x,y,z,t) - K(x,y,z) • L,(x,y,z,r) (1) 

where t is the time and K(x,y,z) is the sensitivity vector defined 
as the difference between the observation and illumination vectors 
K2(x,y,z) and Kifry.z), respectively, with x,y,andz 
representing the Cartesian coordinates characterizing the 
holographic setup. 

The time varying light field propagating from the vibrating 
object, along the direction specified by the vector K2, interferes 
with a complex reference field to produce a spatial distribution of 
image irradiance, /,•„,(*, y,z), which is proportional to the square 
of the zero-order Bessel function of the first kind of the argument 
Q,(jc,y,z,t), with the proportionality factor being the amplitude 
squared of the object field, Al(x,y,z), that is, 

Iim{x, y, z) =Al(x, y, z)J2„ [Q,(x, y, z, /)] (2) 

Equation 2 shows that the image obtained during reconstruction 
of the time-average hologram is modulated by a system of fringes 
of unequal brightness described by the square of the zero-order 
Bessel function of the first kind. Thus, for nontrivial values of 
A„, centers of the dark fringes will locate at those points on the 
surface of the object where J0(Q,) equals zero. 

In the case of the out-of-plane (transverse) vibrations of the 
object, i. e., when motion of the object is in the direction parallel 
to the z-axis, Fig. 1, the vibration amplitude, Lu, was shown by 
Pryputniewicz (1985a, 1987) to be 

u=- 
2n(K2l-Ku) 

-\a,\ (3) 

In Eq. 3, L,,is the z-component of the displacement vector, X is 
the wavelength of the laser light used to record and reconstruct 
the holograms, Ktl and Klt are the components of the illumination 
and observation unit vectors defining directions of Ki andK2, 
respectively, and |0,| is the magnitude of the fringe-locus 
function. 

In order to evaluate Eq. 3, the wavelength of the laser light 
must be known, the illumination and the observation geometry 
must be known in terms of the components of the unit 
illumination and observation vectors, and the spatial distribution 
of the fringe-locus function must also be known. The wavelength 
of the laser light is usually very well known for the specific type 
of the laser being used. The illumination and the observation 
vectors are computed based on the measurements of x, y, and z 
coordinates of the position vectors specifying locations of the 
point source of the illumination, the point(s) of interest on the 
object, and the point along the optical axis of the viewing system 
(Pryputniewicz, 1985b, 1994b). Finally, the spatial distribution 
of Q, is determined directly from the holograms and, for the case 
of TAHI by means of EOH, this determination is the subject of 
Section 3. 
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3. ELECTRO-OPTIC HOLOGRAPHY 
Unlike traditional forms of holographic interferometry, EOH 

does not use a photographic medium to record the fringe patterns. 
Rather, a CCD camera is used to convert the light intensity 
patterns into a digital bit map, making this method capable of 
producing quantitative data in nearly real-time. That is, in the 
EOH method, the irradiances produced by mutual interference of 
the object and the reference fields are recorded electronically by 
the CCD camera, as discussed by Stetson and Brohinsky (1988) 
and by Pryputniewicz and Stetson (1989). Processing of this 
interferometric information and display of the experimental results 
are carried out concomitantly with the measurements of 
irradiation. In order to achieve this, the EOH method relies on 
electronic acquisition, processing, and display of optical 
interference information, and allows automated processing of 
fringes of objects subjected to static and dynamic loads (Oh and 
Pryputniewicz, 1990; Pryputniewicz, 1991b). 

In the following sections, principles of the EOH, as they apply 
to vibrations, are outlined and their implementation to the study of 
dynamics of the electronic components is presented. In order to 
facilitate development of the governing equations, this 
presentation considers time-average recording of sinusoidally 
vibrating objects. 

3.1. Quantitative analysis of electro-optic holograms 
In EOH, the holographic process is carried out by recording 

sequential frames of images of an object as it vibrates. Typically, 
four sequential frames are recorded, with a finite phase step, 
imposed on the reference beam, between each frame. It should be 
noticed that the number of the sequentially recorded frames is 
equal to the number of unknowns in Eq. 4 which describes 
irradiance distribution of a typical frame recorded in the EOH 
system. For the case of a sinusoidally vibrating object, the 
irradiance distribution for the n-th sequential frame, I,.(x,y), at 
the detector array of a CCD camera in the EOH system can be 
represented (Pryputniewicz and Stetson, 1989; Pryputniewicz, 
1993)by 

l,.(*,y) = l,.(x.y) + 'r(x,y) + 
+2A„(x,y)Ar(x,y)cos[A$(x,y) + 
+AB„]J0[Cl,(x,>•,/)]  . (4) 

In Eq. 4, x and y identify the coordinates of the detectors in the 
CCD array, t indicates the time, /„ and Irdenote the irradiances of 
the object and reference fields, whose amplitudes are A0 and Ar, 
respectively. A<{> is the phase difference between the two fields. 
A6„ is the n - ih finite phase step - in this study, the phase step 
equals 90° and is introduced between the sequential frames, J„ is 
the zero-order Bessel function of the first kind, and fi, is the time 
dependent fringe-locus function defining loci on the surface of a 
vibrating object. 

Following the procedure used by Pryputniewicz and Stetson 
(1989), it can be shown that, for any set of the four sequentially 
recorded frames. 

U„-I,S-+U,:-/,.)2 = l(>A;A2
rJl(n,-B)  . (5) 

where the Cartesian coordinates were omitted for simplification. 

Quantitative interpretation of the electronically recorded 
holograms of the vibrating objects depends on determination of 
Q,, from Eq. 5. This determination can be done by optical 
shifting of the J„ fringes. This shifting is achieved by modulating 
the phase of either the object or the reference beams sinusoidally 
by addition of a phase bias, B, to the argument of the Bessel 
function. If the phase of the sinusoidal beam modulation is 
adjusted to coincide with that of the object vibration, the phasor 
becomes a simple additive term within the argument of the Bessel 
function, as it is shown in Eq. 5. In this approach, the nearly 
periodic nature of the Jl{Q.,-B) function is modeled as 
cos2(fl-5) function, where Q represents the fringe-locus 
function describing the cosinusoidal fringes observed during the 
reconstruction of a double-exposure hologram, and is utilized to 
obtain an approximate solution for Q.,, based on the three 
irradiance distributions of the type given by Eq. 5, corresponding 
to the zero, the positive, and the negative phase bias shifts, 
respectively. This approximate solution, fi,      , that is, 

ßw„.„ = ^tan-' l-cos(2fi) 
sin(2B) 

Jl(n,+B)-jKal-B) 
2Ji(n,)-ji(Q,-B)-jKn, + B) 

(6) 

differs from the correct value of the argument Q, of the J„ 
function because of inequality between the J; and the cos2 

functions, and can be expressed as 

ß.w„. =n,+e (7) 

where e is the error representing this difference. This error is 
computed for a range of interest in the values of Cl,, subject to the 
specific values of 5, to create a lookup table. The lookup table is 
used to correct the values of ßW(,„„ computed from Eq. 6. Once 
correct values of Q, are determined, they can be used to compute 
the correct displacement using, e. g., Eq. 3. 

The interferometric information necessary to solve Eq. 7 is 
recorded electronically by the EOH system, at the rate of 30 
frames per second. The system processes this information in a 
pipeline fashion Currently, this processing yields the results at up 
to 512x480 points per frame. 

3.2. Description of the EOH system 
A typical opto-mechanical configuration of the EOH system is 

shown in Fig. 1. In this system, the laser output is divided into 
two beams by means of a variable beamsplitter, BS. One of these 
beams is directed by a fixed mirror Ml, and a phase stepper 
controlled (i. e., moveable) mirror, PS1, and is shaped by the 
spatial filter beam expander assembly, SEI, to illuminate the 
object uniformly; PS1 can be driven at the same frequency as the 
object excitation to provide bias modulation necessary for 
quantitative interpretation of holograms of vibrating objects, as 
discussed in Section 3.1. The beam rotator, BR, located between 
PS1 and the object, is used to rotate the object illumination to 
facilitate speckle averaging. The direction of the object 
illumination is characterized by the vector K,, while the object 
observation is defined by the vector K2. The other beam, steered 
by M2 and PS2 and spatially filtered and expanded by SE2, is 
directed toward the reference input of the speckle interferometer. 
SI. In this arrangement, PS2 introduces 90° phase steps between 
the consecutive frames. 
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y. 2. The test board, used in this study, with eight identical surface mourned 

lidded components arranged in two rows with four components per row. 

The speckle interferometer combines the object beam with the 
reference beam and directs them coliineady toward the detector 
array of the CCD camera. Ttse camera detects the interference 
pattern and sends it to the pipeline processor. The sequential 
frames arc processed to determine quantitative information on the 
object displacements and/or deformations. All computations arc 
done in a pipeline processor which operates under control of a 
host computer. The host computer also controls excitation of the 
object, coordinates it with the bias modulation imposed on the 
object beam, and keeps track of the 90° phase steps between the 
seeuential frames. 

Fig. 3. A typical lidded component. 

By operating on each input frame and its three predecessors, 
the pipeline processor produces a hologram, and this hologram is 
viewed concomitantly on the TV monitor. Such holograms are 
produced for the zero, as well as the positive, and the negative 
bias modulations, for each resonance condition of the object. The 
resulting three electronic holograms are then processed, by the 
host computer, to determine spatial distribution of Q,. which, in 
turn, leads to computation of the displacement vectors. 

4. TEST SAMPLES 
in this study, a multilayer test board with eight identical 

surface mounted lidded components was used. Fig. 2. A typical 
component is shown in Fig. 3. The components were arranged in 
two rows with four components per row. 

For the measurements, the test board was fixed at one end in a 
cantilever configuration, to simulate an edge connection. ^ Then, it 
was excited piezoelcctricaliy by imposing sinusoidal excitation at 
the 'connector' end. The exciatation frequencies ranged from zero 
to approximately 32 kHz. 

5. REPRESENTATIVE RESULTS AND DISCUSSION 
In this study, the test board was first examined in a full field of 

view, Fig. 4. Then, a single component was selected and a more 
detailed study of dynamics of this component was performed, Figs 
5 to S3. All interfetograms shown in Figs 4 to 13 were recorded 
electronically using the EOH system described in Section 3. 

Based on the full field of view examination of the test board, it 
was noticed that, a; the lower excitation frequencies, all eight 
components were exhibiting some response to the excitation as 
evidenced by the fringe patterns formed on the lids. Fig. 4a. 
However, as the excitation frequency increased, this was not 
always the case, Fig. 4b. Using the full field of view results, the 
most dynamically active component was selected for a more 
detailed" study, This component was the third from the left in the 
lower row. Fig. 4. 

Figures 5 to 13 show results of the study of dynamics of a 
single". Fig. 3, lidded component mounted on the test board shown 
in Fig, 2. The fringe patterns shown in Figs 5 to 13 were recorded 
by the EOH system described in Section 3. These fringe patterns 
correspond to all sequential resonance conditions found in the 
frequency range from zero to 32 kHz, used in this study. Also, 
Figs 5 to'13 show, where applicable, the finite element results for 
the same component. 

In general, the agreement between the FEM and the EOH 
results is good in terms of predictability of the mode shapes. 
Also, the resonance frequencies, as determined by the two 
methods, agree to within 2%. Fig, 14. However, for the range of 
the frequencies used in this study, two resonance conditions, 
shown in Figs 1 i and 12 were not predicted by the FEM model 
In the follow up study, the FEM model will be rcexamined and an 
attempt will be made to determine the cause(s) of this discrepancy 
between its and the EOH results. 
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Fig. 4, The EÖH images of the test board in full field of view and vibrating as: 
(a) 6,720 Hz, and (b) 20.01! Hz. 
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Fig 5. The sitsdy of dynamics of a single component: fa) the BOH image recorded as 6.720 H;t. 
(h) she FEM determined mode shape as 6.752 Hz, and {c} she wire frame repfcscntasion of she displacements. 
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(a) (b) (c) 

Fig. 6. The study of dynamics of a single component: (a) the EOH image recorded at 13,685 Hz, 
(b) the FEM determined mode shape at 13,749 Hz, and (c) the wire frame representation of the displacements. 
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(a) (b) (c) 

Fig. 7. The study of dynamics of a single component: (a) the EOH image recorded at 14,006 Hz, 
(b) the FEM determined mode shape at 13.749 Hz, and (c) the wire frame representation of the displacements. 
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Fig. 8. Thesrudy of dynamics of a single component: (a) thcEOH image recorded as 20.011 Hz, 
(b) the FEM derennined mode shape si 20,209 Hz, and (c) the wire frame representation of the displacements. 
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(a) (b) (c) 

Fig. 10. The study of dynamics of a single component: (a) the EOH image recorded at 24,980 Hz, 
(b) the FEM determined mode shape at 24,722 Hz, and (c) the wire frame representation of the displacements. 

Fig. 11. The study of dynamics of a single 
component: the EOH image recorded at 26,000 Hz. 

no corresponding FEM results . 

Fig. 12. The study of dynamics of a single 
component: the EOH image recorded at 28,990 Hz. 

no corresponding FEM results . 
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(a) (b) (c) 

Fig. 13. The study of dynamics of a single component: (a) theEOH image recorded at 31,005 Hz, 
(b) the FEM determined mode shape at 30,724 Hz, and (c) the wire frame representation of the displacements. 

0 5 10 15 20 25 30 
FREQUENCY MEASURED BY HOLOGRAPHY. kHz 

Fig. 14. A summary of the resonance frequencies, the 
symbols indicate the actual correlation between the FEM and 
the EOH results while the line indicates the ideal correlation. 

electronically at the rate of 30 frames per second, it is processed 
in a pipeline fashion, and produces results which have very high 
spatial density - currently at up to 512x480, or approximately 
quarter of a million points per frame. 

The representative results show that the EOH system provides 
an effective way for recording the time-average holograms of the 
vibrating electronic components. Using these holograms, eight 
resonance conditions were identified within the frequency range 
from zero to 32 kHz, used in this study. All, except two of these 
resonance conditions were predicted by the FEM model used. 
The correlation between the FEM and the EOH resonance 
frequencies was within 2% of each other. 

The ongoing work on combining the methods of hologram 
interferometry with the finite element methods will lead to a 
development of new design procedures. Such hybrid procedures, 
possessing both experimental and computational capabilities will, 
in turn, lead to the next generation of tools that will enhance the 
design and optimization of critical components and structures 
used in the development of modern electronic packages, 
especially those for avionic applications. 

6. CONCLUSIONS AND RECOMMENDATIONS 
In this paper, fundamentals of the TAHI have been presented 

and principles of EOH have been reviewed with emphasis on the 
quantitative analysis of the vibrating objects. The quantitative 
results were illustrated by representative examples from a study of 
dynamics of the multilayer board with surface mounted lidded 
components. 

Using the EOH, the results are obtained in an automated 
manner. The     interferometric     information    is    recorded 
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